Creating a Custom Embedded Linux Distribution for Any Embedded Device Using the Yocto Project

Behan Webster
Tom King
The Linux Foundation
May 25, 2021
(CC BY-SA 4.0)
The URL for this presentation

Yocto Project Overview

➢ Collection of tools and methods enabling
 ☰ Rapid evaluation of embedded Linux on many popular off-the-shelf boards
 ☰ Easy customization of distribution characteristics

➢ Supports x86, ARM, MIPS, Power, RISC-V

➢ Based on technology from the OpenEmbedded Project

➢ Layer architecture allows for easy re-use of code

- meta (oe-core)
- meta-poky
- meta-yocto-bsp
- other layers
What is the Yocto Project?

➢ Umbrella organization under Linux Foundation
➢ Backed by many companies interested in making Embedded Linux easier for the industry
➢ Co-maintains OpenEmbedded Core and other tools (including opkg)
Yocto Project Governance

➢ Organized under the Linux Foundation
➢ Split governance model
➢ Technical Leadership Team
➢ Advisory Board made up of participating organizations
Yocto Project Member Organizations

Platinum members

Intel
Texas Instruments

Gold members

Wind
Mentor Graphics
NXP
Renesas
Juniper Networks
Xilinx

Silver members

Montavista
OSS Systems
Linaro
ENEA
Timesys
Dell
LG Electronics
Comcast
OpenEmbedded
Long Term Support Initiative

bit.ly/YPS202105Intro
Yocto Project Overview

➢ YP builds packages - then uses these packages to build bootable images
➢ Supports use of popular package formats including:
 ◆ rpm, deb, ipk
➢ Releases on a 6-month cadence
➢ Latest (stable) kernel, toolchain and packages, documentation
➢ App Development Tools including Eclipse plugin, SDK, toaster
Yocto Project Release Versions

<table>
<thead>
<tr>
<th>Name</th>
<th>Revision</th>
<th>Poky</th>
<th>Release Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernard</td>
<td>1.0</td>
<td>5.0</td>
<td>Apr 5, 2011</td>
</tr>
<tr>
<td>Edison</td>
<td>1.1</td>
<td>6.0</td>
<td>Oct 17, 2011</td>
</tr>
<tr>
<td>Denzil</td>
<td>1.2</td>
<td>7.0</td>
<td>Apr 30, 2012</td>
</tr>
<tr>
<td>Danny</td>
<td>1.3</td>
<td>8.0</td>
<td>Oct 24, 2012</td>
</tr>
<tr>
<td>Dylan</td>
<td>1.4</td>
<td>9.0</td>
<td>Apr 26, 2013</td>
</tr>
<tr>
<td>Dora</td>
<td>1.5</td>
<td>10.0</td>
<td>Oct 19, 2013</td>
</tr>
<tr>
<td>Daisy</td>
<td>1.6</td>
<td>11.0</td>
<td>Apr 24, 2014</td>
</tr>
<tr>
<td>Dizzy</td>
<td>1.7</td>
<td>12.0</td>
<td>Oct 31, 2014</td>
</tr>
<tr>
<td>Fido</td>
<td>1.8</td>
<td>13.0</td>
<td>Apr 22, 2015</td>
</tr>
<tr>
<td>Jethro</td>
<td>2.0</td>
<td>14.0</td>
<td>Oct 31, 2015</td>
</tr>
<tr>
<td>Krogoth</td>
<td>2.1</td>
<td>15.0</td>
<td>Apr 29, 2016</td>
</tr>
<tr>
<td>Morty</td>
<td>2.2</td>
<td>16.0</td>
<td>Oct 28, 2016</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Revision</th>
<th>Poky</th>
<th>Release Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyro</td>
<td>2.3</td>
<td>17.0</td>
<td>Apr, 2017</td>
</tr>
<tr>
<td>Rocko</td>
<td>2.4</td>
<td>18.0</td>
<td>Oct, 2017</td>
</tr>
<tr>
<td>Sumo</td>
<td>2.5</td>
<td>19.0</td>
<td>Apr, 2018</td>
</tr>
<tr>
<td>Thud</td>
<td>2.6</td>
<td>20.0</td>
<td>Oct, 2018</td>
</tr>
<tr>
<td>Warrior</td>
<td>2.7</td>
<td>21.0</td>
<td>Apr, 2019</td>
</tr>
<tr>
<td>Zeus</td>
<td>3.0</td>
<td>22.0</td>
<td>Oct, 2019</td>
</tr>
<tr>
<td>Dunfell</td>
<td>3.1</td>
<td>23.0</td>
<td>Apr, 2020</td>
</tr>
<tr>
<td>Gatesgarth</td>
<td>3.2</td>
<td>24.0</td>
<td>Oct, 2020</td>
</tr>
<tr>
<td>Hardknott</td>
<td>3.3</td>
<td>25.0</td>
<td>Apr, 2021</td>
</tr>
</tbody>
</table>
Yocto is based on OpenEmbedded-core

Metadata describing approximately 1000 "core" recipes used for building boot images. Includes support for graphics, Qt, networking, kernel recipes, tools, much more.
Intro to OpenEmbedded

➢ The OpenEmbedded Project co-maintains OE-core build system:
 - bitbake build tool and scripts
 - Metadata and configuration

 ➢ Provides a central point for new metadata
 - (see the OE Layer index)
What is Bitbake?

- **Bitbake**
 - Powerful and flexible build engine (Python)
 - Reads metadata
 - Determines dependencies
 - Schedules tasks

Metadata – a structured collection of "recipes" which tell BitBake what to build, organized in layers
OK, so what is Poky?

➢ Poky is a reference distribution
➢ Poky has its own git repo
 ◆ git clone git://git.yoctoproject.org/poky
➢ Primary Poky layers
 ◆ oe-core (poky/meta)
 ◆ meta-poky (poky/meta-poky)
 ◆ meta-yocto-bsp
➢ Poky is the starting point for building things with the Yocto Project
Poky in Detail

➢ Contains core components
 - Bitbake tool: A python-based build engine
 - Build scripts (infrastructure)
 - Foundation package recipes (**oe-core**)
 - meta-poky (Contains distribution policy)
 - Reference BSPs
 - Yocto Project documentation
Putting It All Together

➢ **Yocto Project** is a large collaboration project
➢ **OpenEmbedded** is providing most metadata
➢ **Bitbake** is the build tool
➢ **Poky** is the Yocto Project's reference distribution
➢ Poky contains a version of bitbake and oe-core from which you can start your project
BITBAKE

This section will introduce the concept of the bitbake build tool and how it can be used to build recipes
Metadata and bitbake

➢ Most common form of metadata: The Recipe
➢ A Recipe provides a “list of ingredients” and “cooking instructions”
➢ Defines settings and a set of tasks used by bitbake to build binary packages
What is Metadata?

Metadata exists in four general categories:

- **Recipes (*.bb)**
 - Usually describe build instructions for a single package

- **PackageGroups (special *.bb)**
 - Often used to group packages together for a FS image

- **Classes (*.bbclass)**
 - Inheritance mechanism for common functionality

- **Configuration (*.conf)**
 - Drives the overall behavior of the build process
Other Metadata

➢ **Append files (*.bbappend)**
 - Define additional metadata for a similarly named .bb file
 - Can add or override previously set values

➢ **Include files (*.inc)**
 - Files which are used with the *include* directive
 - Also can be included with *require* (mandatory include)
 - Include files are typical found via the **BBPATH** variable
OE-CORE Breakdown

* .bb: 745
 packagegroup*: 25
 *.bbclass: 197
 *.conf: 68
 *.inc: 259
Introduction to Bitbake

- **Bitbake** is a task executor and scheduler
- By default the *build* task for the specified recipe is executed
 $ bitbake myrecipe

- You can indicate which task you want run
 $ bitbake -c clean myrecipe
 $ bitbake -c cleanall myrecipe

- You can get a list of tasks with
 $ bitbake -c listtasks myrecipe
Building Recipes

➢ By default the highest version of a recipe is built (can be overridden with DEFAULT_PREFERENCE or PREFERRED_VERSION metadata)
 $ bitbake myrecipe

➢ You can specify the version of the package you want built (version of upstream source)
 $ bitbake myrecipe-1.0

➢ You can also build a particular revision of the package metadata
 $ bitbake myrecipe-1.0-r0

➢ Or you can provide a recipe file to build
 $ bitbake -b mydir/myrecipe.bb
Running bitbake for the First Time

➢ When you do a really big build, running with --continue (-k) means bitbake will proceed as far as possible after finding an error

\$ bitbake -k core-image-minimal

◆ When running a long build (e.g. overnight) you want as much of the build done as possible before debugging issues

➢ Running bitbake normally will stop on the first error found

\$ bitbake core-image-minimal

➢ We'll look at debugging recipe issue later...
Bitbake is a Task Scheduler

- Bitbake builds recipes by scheduling build tasks in parallel

  ```
  $ bitbake recipe
  ```

- This looks for `recipe.bb` in `BBFILES`

- Each recipe defines build tasks, each which can depend on other tasks

- Recipes can also depend on other recipes, meaning more than one recipe may be built

- Tasks from more than one recipe are often executed in parallel at once on multi-cpu build machines
Recipe Basics – Default Tasks*

- do_fetch
- do_unpack
- do_patch
- do_configure
- do_compile
- do_install
- do_populate_sysroot
- do_package *

Locate and download source code
Unpack source into working directory
Apply any patches
Perform any necessary pre-build configuration
Compile the source code
Installation of resulting build artifacts in WORKDIR
Copy artifacts to sysroot
Create binary package(s)

Note: to see the list of all possible tasks for a recipe, do this:
```
$ bitbake -c listttasks <recipe_name>
```
Simple recipe task list*

$ bitbake hello

NOTE: Running task 337 of 379 (ID: 4, hello_1.0.0.bb, do_fetch)
NOTE: Running task 368 of 379 (ID: 0, hello_1.0.0.bb, do_unpack)
NOTE: Running task 369 of 379 (ID: 1, hello_1.0.0.bb, do_patch)
NOTE: Running task 370 of 379 (ID: 5, hello_1.0.0.bb, do_configure)
NOTE: Running task 371 of 379 (ID: 7, hello_1.0.0.bb, do_populate_license)
NOTE: Running task 372 of 379 (ID: 6, hello_1.0.0.bb, do_compile)
NOTE: Running task 373 of 379 (ID: 2, hello_1.0.0.bb, do_install)
NOTE: Running task 374 of 379 (ID: 11, hello_1.0.0.bb, do_package)
NOTE: Running task 375 of 379 (ID: 3, hello_1.0.0.bb, do_populate_sysroot)
NOTE: Running task 376 of 379 (ID: 8, hello_1.0.0.bb, do_packagedata)
NOTE: Running task 377 of 379 (ID: 12, hello_1.0.0.bb, do_package_write_ipk)
NOTE: Running task 378 of 379 (ID: 9, hello_1.0.0.bb, do_package_qa)

*Output has been formatted to fit this slide.

*Simplified for illustration
Several bitbake tasks can use past versions of build artefacts if there have been no changes since the last time you built them.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>do_packagedata</td>
<td>Creates package metadata used by the build system to generate the final packages</td>
</tr>
<tr>
<td>do_package</td>
<td>Analyzes the content of the holding area and splits it into subsets based on available packages and files</td>
</tr>
<tr>
<td>do_package_write_rpm</td>
<td>Creates the actual RPM packages and places them in the Package Feed area</td>
</tr>
<tr>
<td>do_populate_lic</td>
<td>Writes license information for the recipe that is collected later when the image is constructed</td>
</tr>
<tr>
<td>do_populate_sysroot</td>
<td>Copies a subset of files installed by do_install into the sysroot in order to make them available to other recipes</td>
</tr>
</tbody>
</table>
Simple recipe build from sstate cache

$ bitbake -c clean hello
$ bitbake hello

NOTE: Running setscene task 69 of 74 (hello_1.0.0.bb, do_populate_sysroot_setscene)
NOTE: Running setscene task 70 of 74 (hello_1.0.0.bb, do_populate_lic_setscene)
NOTE: Running setscene task 71 of 74 (hello_1.0.0.bb, do_package_qa_setscene)
NOTE: Running setscene task 72 of 74 (hello_1.0.0.bb, do_package_write_ipk_setscene)
NOTE: Running setscene task 73 of 74 (hello_1.0.0.bb, do_packagedata_setscene)

*Output has been formatted to fit this slide.

*Simplified for illustration
RECIPIES

This section will introduce the concept of metadata and recipes and how they can be used to automate the building of packages.
What is a Recipe?

➢ A recipe is a set of instructions for building packages, including:
 ✦ Where to obtain the upstream sources and which patches to apply (this is called “fetching”)
 o SRC_URI
 ✦ Dependencies (on libraries or other recipes)
 o DEPENDS, RDEPENDS
 ✦ Configuration/compilation options
 o EXTRA_OECONF, EXTRA_OEMAKE
 ✦ Define which files go into what output packages
 o FILES_*
Example Recipe – ethtool_3.15.bb

SUMMARY = "Display or change ethernet card settings"
DESCRIPTION = "A small utility for examining and tuning the settings of your ethernet-based network interfaces."
HOMEPAGE = "http://www.kernel.org/pub/software/network/ethtool/"
SECTION = "console/network"
LICENSE = "GPLv2+"
LIC_FILES_CHKSUM = "file://COPYING;md5=b234ee4d69f5fce4486a80fdaf4a4263 \ file://ethtool.c;beginline=4;endline=17;md5=c19b30548c582577 fc6b443626fc1216"

SRC_URI = "${KERNELORG_MIRROR}/software/network/ethtool/ethtool-$(PV).tar.gz \ file://run-ptest \ file://avoid_parallel_tests.patch \ file://ethtool-uint.patch \"

SRC_URI[md5sum] = "7e94dd958bcd639aad2e5a752e108b24"
SRC_URI[sha256sum] = "562e3cc675cf5b1ac655cd060f032943a2502d4d59e5f278f02aae9256 2ba261"
inherit autotools ptest
RDEPENDS_${PN}-ptest += "make"
What can a Recipe Do?

➢ Build one or more packages from source code
 ◆ Host tools, compiler, utilities
 ◆ Bootloader, Kernel, etc
 ◆ Libraries, interpreters, etc
 ◆ Userspace applications

➢ Package Groups

➢ Full System Images
Recipe Operators

A = “foo” (late assignment)
B ?= “0t” (default value)
C ??= “abc” (late default)
D := “xyz” (Immediate assignment)

A .= “bar” “foobar” (append)
B =. “WO” “W00t” (prepend)
C += “def” “abc def” (append)
D += “uvw” “uvw xyz” (prepend)
More Recipe Operators

A = “foo”
A_append = “bar” → “foobar”
B = “0t”
B_prepend = “WO” → “W00t”

OVERRIDES = “os:arch:machine”
A = “abc”
A_os = “ABC” (Override)
A_append_arch = “def” (Conditional append)
A_prepend_os = “XYZ” (Conditional prepend)
Bitbake Variables/Metadata

➢ These are set automatically by bitbake
 ◆ **TOPDIR** – The build directory
 ◆ **LAYERDIR** – Current layer directory
 ◆ **FILE** – Path and filename of file being processed

➢ Policy variables control the build
 ◆ **BUILD_ARCH** – Host machine architecture
 ◆ **TARGET_ARCH** – Target architecture
 ◆ And many others...
Build Time Metadata

- **PN** – Package name ("myrecipe")
- **PV** – Package version (1.0)
- **PR** – Package Release (r0)
- **P** = "${PN}-${PV}"
- **PF** = "${PN}-${PV}-${PR}"
- **FILE_DIRNAME** – Directory for **FILE**
- **FILESPATH** = "${FILE_DIRNAME}/${PF}: ${FILE_DIRNAME}/${P}: ${FILE_DIRNAME}/${PN}: ${FILE_DIRNAME}/files:${FILE_DIRNAME}"
Build Time Metadata

➢ **TOPDIR** - The build directory
➢ **TMPDIR** = "${TOPDIR}/tmp"
➢ **WORKDIR** = `${TMPDIR}/work/${PF}`
➢ **S** = "${WORKDIR}/${P}" (Source dir)
➢ **B** = "${S}" (Build dir)
➢ **D** = "${WORKDIR}/${image}" (Destination dir)
➢ **DEPLOY_DIR** = "${TMPDIR}/deploy"
➢ **DEPLOY_DIR_IMAGE** = "${DEPLOY_DIR}/images"
Dependency Metadata

- **Build time package variables**
 - **DEPENDS** – Build time package dependencies
 - **PROVIDES** = "${P} ${PF} ${PN}"

- **Runtime package variables**
 - **RDEPENDS** – Runtime package dependencies
 - **RRECOMMENDS** – Runtime recommended packages
 - **RSUGGESTS** – Runtime suggested packages
 - **RPROVIDES** – Runtime provides
 - **RPROVIDES** – Runtime provides
 - **RCONFLICTS** – Runtime package conflicts
 - **RREPLACES** – Runtime package replaces
Common Metadata

➢ Variables you commonly set

◆ **SUMMARY** – Short description of package/recipe
◆ **HOMEPAGE** – Upstream web page
◆ **LICENSE** – Licenses of included source code
◆ **LIC_FILES_CHKSUM** – Checksums of license files at time of packaging (checked for change by build)
◆ **SRC_URI** – URI of source code, patches and extra files to be used to build packages. Uses different fetchers based on the URI.
◆ **FILES** – Files to be included in binary packages
Examining Recipes: bc

➢ Look at 'bc' recipe:
➢ Found in
 poky/meta/recipes-extended/bc/bc_1.06.bb
 - Uses LIC_FILES_CHKSUM and SRC_URI checksums
 - Note the DEPENDS build dependency declaration indicating that this package depends on flex to build
Examining Recipes: bc.bb

SUMMARY = "Arbitrary precision calculator language"
HOMEPAGE = "http://www.gnu.org/software/bc/bc.html"

LICENSE = "GPLv2+ & LGPLv2.1"
LIC_FILES_CHKSUM = "file://COPYING;md5=94d55d512a9ba36caa9b7df079bae19f \
 file://COPYING.LIB;md5=d8045f3b8f929c1cb29a1e3fd737b499 \
 file://bc/bcdefs.h;endline=31;md5=46dffdaf10a99728dd8ce358e45d46d8 \
 file://dc/dc.h;endline=25;md5=2f9c558cdd80e31b4d904e48c2374328 \
 file://lib/number.c;endline=31;md5=99434a0898abca7784acfd36b8191199"

SECTION = "base"
DEPENDS = "flex"

SRC_URI = " ${GNU_MIRROR}/bc/bc-${PV}.tar.gz \
 file://fix-segment-fault.patch "
SRC_URI[md5sum] = "d44b5dddebd8a7a7309aea6c36fda117"
SRC_URI[sha256sum] = "4ef6d9f17c3c0d92d8798e35666175ecd3d8efac4009d6457b5c99cea72c0e33"

inherit autotools texinfo update-alternatives

ALTERNATIVE_$(PN) = "dc"
ALTERNATIVE_PRIORITY = "100"
BBCLASSEXTEND = "native"
Building upon bbclass

➢ Use inheritance for common design patterns
➢ Provide a class file (.bbclass) which is then inherited by other recipes (.bb files)

inherit autotools

◆ Bitbake will include the autotools.bbclass file
◆ Found in a classes directory via the BBPATH
Examining Recipes: flac

➢ Look at 'flac' recipe
➢ Found in

```
poky/meta/recipes-multimedia/flac/flac_1.3.2.bb
```

- Inherits from both autotools and gettext
- Customizes autoconf configure options (EXTRA_OECONF) based on "TUNE" features
- Breaks up output into multiple binary packages
 - See PACKAGES var. This recipe produces additional packages with those names, while the FILES_* vars specify which files go into these additional packages
Examining Recipes: flac.bb

SUMMARY = "Free Lossless Audio Codec"
DESCRIPTION = "FLAC stands for Free Lossless Audio Codec, a lossless audio compression format."
HOMEPAGE = "https://xiph.org/flac/
BUGTRACKER = "http://sourceforge.net/p/flac/bugs/
SECTION = "libs"
LICENSE = "GFDL-1.2 & GPLv2+ & LGPLv2.1+ & BSD"

LIC_FILES_CHKSUM = "file://COPYING.FDL;md5=ad1419ecc56e060eccf8184a87c4285f \
 file://src/Makefile.am;beginline=1;endline=17;md5=09501c864f89dfe7ead65553129817ca \
 file://COPYING.GPL;md5=b234ee4d69f5f6ce4486a80fdaia4a4263 \
 file://src/flac/main.c;beginline=1;endline=18;md5=09777e2934947a36f13568d0beb81199 \
 file://COPYING.LGPL;md5=059c1b67f07b7965f821a3d36505e3 \
 file://include/FLAC/all.h;beginline=65;endline=70;md5=64474f22e9e77b28d8b8b25c983a48"

DEPENDS = "libogg"
SRC_URI = "http://downloads.xiph.org/releases/flac/${BP}.tar.xz"
SRC_URI[md5sum] = "454f1bfa3f93cc708098d7890d0499bd"
SRC_URI[sha256sum] = "91cfc3ed61dc40f47f050a109b08610667d73477af6ef36dcad31c31a4a8d53f"

(con't next page)
Examining Recipes: flac.bb (con't)

CVE_PRODUCT = "libflac"
inherit autotools gettext
EXTRA_OECONF = "--disable-oggtest \
 --with-ogg-libraries=${STAGING_LIBDIR} \
 --with-ogg-includes=${STAGING_INCDIR} \
 --disable-xmms-plugin \
 --without-libiconv-prefix \
 ac_cv_prog_NASM="" \
 ""

EXTRA_OECONF += "${@bb.utils.contains("TUNE_FEATURES", "altivec", " --enable-altivec", " --disable-altivec", d)}"
EXTRA_OECONF += "${@bb.utils.contains("TUNE_FEATURES", "core2", " --enable-sse", ",", d)}"
EXTRA_OECONF += "${@bb.utils.contains("TUNE_FEATURES", "corei7", " --enable-sse", ",", d)}"
PACKAGES += "libflac libflac++ liboggflac liboggflac++"
FILES_${PN} = "${bindir}/*"
FILES_libflac = "${libdir}/libFLAC.so.*"
FILES_libflac++ = "${libdir}/libFLAC++.so.*"
FILES_liboggflac = "${libdir}/libOggFLAC.so.*"
FILES_liboggflac++ = "${libdir}/libOggFLAC++.so.*"
Grouping Local Metadata

➢ Sometimes sharing metadata between recipes is easier via an *include file*

```
include file.inc
```

◆ Will include `.inc` file if found via BBPATH
◆ Can also specify an absolute path
◆ If not found, will continue without an error

```
require file.inc
```

◆ Same as an include
◆ Fails with an error if not found
Examining Recipes: ofono

➢ Look at 'ofono' recipe(s):
➢ Found in

poky/meta/recipes-connectivity/ofono/ofono_1.19.bb

◆ Splits recipe into common .inc file to share common metadata between multiple recipes
◆ Sets a conditional build configuration options through the PACKAGECONFIG var based on a DISTRO_FEATURE (in the .inc file)
◆ Sets up an init service via do_install_append()
◆ Has a _git version of the recipe (not shown)
require ofono.inc

SRC_URI = "\$
 {KERNELORG_MIRROR}/linux/network/${BPN}/${BP}.tar.xz \
 file://ofono \n"

SRC_URI[md5sum] = "a5f8803ace110511b6ff5a2b39782e8b"
SRC_URI[sha256sum] =
 "a0e09bdd8b53b8d2e4b54f1863ecd9aebe4786477a6cbf8f655496e8edb31c81"

CFLAGS_append_libc-uclibc = " -D GNU_SOURCE"
Examining Recipes: ofono.inc

HOMEPAGE = "http://www.ofono.org"
SUMMARY = "open source telephony"
DESCRIPTION = "oFono is a stack for mobile telephony devices on Linux. oFono supports speaking to telephony devices through specific drivers, or with generic AT commands."
LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://COPYING;md5=eb723b61539feef013de476e68b5c50a\
 file://src/ofono.h;beginline=1;endline=20;md5=3ce17d5978ef3445def265b98899c2ee"

inherit autotools pkgconfig update-rc.d systemd bluetooth

DEPENDS = "dbus glib-2.0 udev mobile-broadband-provider-info"

INITSCRIPT_NAME = "ofono"
INITSCRIPT_PARAMS = "defaults 22"

PACKAGECONFIG ??= "\n ${@bb.utils.filter('DISTRO_FEATURES', 'systemd', d)}\n ${@bb.utils.contains('DISTRO_FEATURES', 'bluetooth', 'bluez', '', d)}\n "
PACKAGECONFIG[systemd] = "--with-systemdunitdir=${systemd_unitdir}/system/"
PACKAGECONFIG[bluez] = "--enable-bluetooth, --disable-bluetooth, ${BLUEZ}"

(con't next page)
EXTRA_OECONF += "--enable-test"

SYSTEMD_SERVICE_${PN} = "ofono.service"

do_install_append() {
 install -d ${D}${sysconfdir}/init.d/
 install -m 0755 ${WORKDIR}/ofono ${D}${sysconfdir}/init.d/ofono

 # Ofono still has one test tool that refers to Python 2 in the shebang
 sed -i -e '1s,#!.*python.*,#!${bindir}/python3,' ${D}${libdir}/ofono/test/set-ddr
}

PACKAGES += "${PN}-tests"
RDEPENDS_${PN} += "dbus"
RRECOMMENDS_${PN} += "kernel-module-tun mobile-broadband-provider-info"

FILES_${PN} += "${systemd_unitdir}"
FILES_${PN}-tests = "${libdir}/${BPN}/test"
RDEPENDS_${PN}-tests = "python3 python3-pygobject python3-dbus"
WHEN THINGS GO WRONG

Some useful tools to help guide you when something goes wrong
Bitbake Environment

➢ Each recipe has its own environment which contains all the variables and methods required to build that recipe

➢ You've seen some of the variables already
 - DESCRIPTION, SRC_URI, LICENSE, S, LIC_FILES_CHKSUM, do_compile(), do_install()

➢ Example
 - S = "${WORKDIR}"
 - What does this mean?
Examine a Recipe's Environment

➢ To view a recipe's environment

 $ bitbake -e myrecipe

➢ Where is the source code for this recipe?

 $ bitbake -e virtual/kernel | grep "^S="
 S="${HOME}/yocto/build/tmp/work-shared/qemuarm/kernel-source"

➢ What file was used in building this recipe?

 $ bitbake -e netbase | grep "^FILE="
 FILE="${HOME}/yocto/poky/meta/recipes-core/netbase/netbase_5.3.bb"
Examine a Recipe's Environment (cont'd)

- **What is this recipe's full version string?**

  ```bash
  $ bitbake -e netbase | grep "^PF="
  PF="netbase-1_5.3-r0"
  ```

- **Where is this recipe's BUILD directory?**

  ```bash
  $ bitbake -e virtual/kernel | grep "^B="
  B="${HOME}/yocto/build/tmp/work/qemuarm-poky-linux-
  gnueabi/linux-yocto/3.19.2+gitAUTOINC+9e70b482d3_
  _473e2f3788-r0/linux-qemuarm-standard-build"
  ```

- **What packages were produced by this recipe?**

  ```bash
  $ bitbake -e virtual/kernel | grep "^PACKAGES="
  PACKAGES="kernel kernel-base kernel-vmlinux kernel-image\ 
  kernel-dev kernel-modules kernel-devicetree"
  ```
BitBake Log Files

Every build produces lots of log output for diagnostics and error chasing

- Verbose log of bitbake console output:
 - Look in .../tmp/log/cooker/<machine>

$ cat tmp/log/cooker/qemuarm/20160119073325.log | grep 'NOTE::.task.*Started'

NOTE: recipe hello-1.0.0-r0: task do_fetch: Started
NOTE: recipe hello-1.0.0-r0: task do_unpack: Started
NOTE: recipe hello-1.0.0-r0: task do_patch: Started
NOTE: recipe hello-1.0.0-r0: task do_configure: Started
NOTE: recipe hello-1.0.0-r0: task do_populate_lic: Started
NOTE: recipe hello-1.0.0-r0: task do_compile: Started
NOTE: recipe hello-1.0.0-r0: task do_install: Started
NOTE: recipe hello-1.0.0-r0: task do_populate_sysroot: Started
NOTE: recipe hello-1.0.0-r0: task do_package: Started
NOTE: recipe hello-1.0.0-r0: task do_packagedata: Started
NOTE: recipe hello-1.0.0-r0: task do_package_write_rpm: Started
NOTE: recipe hello-1.0.0-r0: task do_package_qa: Started
NOTE: recipe ypdd-image-1.0-r0: task do_rootfs: Started
BitBake Per-Recipe Log Files

➢ Every **recipe** produces lots of log output for diagnostics and debugging

➢ Use the Environment to find the log files for a given recipe:

```
$ bitbake -e hello | grep "^T="
T="${HOME}yocto/build/tmp/work/armv5e-poky-linux-gnueabi/hello/1.0.0-r0/temp"
```

➢ Each task that runs for a recipe produces "log" and "run" files in

```
${WORKDIR}/temp
```
BitBake Per-Recipe Log Files

$ cd ${T} (See definition of T in previous slide)
$ find . -type l -name 'log.*'
./log.do_package_qa
./log.do_package_write_rpm
./log.do_package
./log.do_fetch
./log.do_populate_lic
./log.do_install
./log.do_configure
./log.do_unpack
./log.do_populate_sysroot
./log.do_compile
./log.do_packagedata
./log.do_patch

These files contain the output of the respective tasks for each recipe
BitBake Per-Recipe Log Files

$ cd ${T} (See definition of T in previous slide)
$ find . -type l -name 'run.*'
./run.do_fetch
./run.do_patch
./run.do_configure
./run.do_populate_sysroot
./run.do_package_qa
./run.do_unpack
./run.do_compile
./run.do_install
./run.do_packagedata
./run.do_populate_lic
./run.do_package
./run.do_package_write_rpm

These files contain the commands executed which produce the build results
BUILDING A FULL EMBEDDED IMAGE WITH YOCTO

This section will introduce the concept of building an initial system image
Quick Start Guide in one Slide

1. **Download Yocto Project sources:**
 - $ mkdir myproject ; cd myproject
 - $ wget http://downloads.yoctoproject.org/releases/yocto/yocto-3.1.3/poky-dunfell-23.0.3.tar.bz2
 - $ tar xf poky-dunfell-23.0.3.tar.bz2
 ◆ Can also use git and checkout a known branch e.g. dunfell
 - $ git clone -b dunfell git://git.yoctoproject.org/poky.git

2. **Build one of the reference Linux distributions:**
 - $ source poky-dunfell-23.0.3/oe-init-build-env mybuild
 ◆ Check/Edit local.conf for sanity (e.g. modify `MACHINE = "qemux86"` or `MACHINE = "qemuarm"`)
 - mybuild$ bitbake -k core-image-minimal

3. **Run the image under emulation:**
 - mybuild$ runqemu qemux86

4. **Profit!!! (well... actually there is more work to do...)**
Host System Layout

$HOME/yocto/
 |---build (or whatever name you choose)
 Project build directory
 |---downloads (DL_DIR)
 Downloaded source cache
 |---poky (Do Not Modify anything in here*)
 Poky, bitbake, scripts, oe-core, metadata
 |---sstate-cache (SSTATE_DIR)
 Binary build cache

* We will cover how to use layers to make changes later
Poky Layout

$HOME/yocto/poky/
|-- LICENSE
|-- README
|-- README.hardware
| |-- bitbake/ (The build tool)
| |-- documentation/
| |-- meta/ (oe-core)
| |-- meta-poky/ (Yocto distro metadata)
| |-- meta-yocto-bsp/ (Yocto Reference BSPs)
| |-- oe-init-build-env (Project setup script)
| |-- scripts/ (Scripts and utilities)

Note: A few files have been items omitted to facility the presentation on this slide
Setting up a Build Directory

➢ Start by setting up a build directory
 ◆ Local configuration
 ◆ Temporary build artifacts

$ cd $HOME/yocto/

$ source ./poky/oe-init-build-env build

➢ Replace build with whatever directory name you want to use for your project

➢ You need to re-run this script in any new terminal you start (and don’t forget the project directory)
Build directory Layout

$HOME/yocto/build/
|-- bitbake.lock
|-- cache/ (bitbake cache files)
|-- conf/
| `-- bblayers.conf (bitbake layers)
| `-- local.conf (local configuration)
| `-- site.conf (optional site conf)
`-- tmp/ (Build artifacts)

Note: A few files have been items omitted to facility the presentation on this slide
Building a Linux Image

General Procedure:

- Create a project directory using
 - `source oe-init-build-env [prj-dir]`
- Configure build by editing local.conf
 - `$HOME/yocto/build/conf/local.conf`
 - Select appropriate `MACHINE` type
 - Set shared downloads directory (`DL_DIR`)
 - Set shared state directory (`SSTATE_DIR`)
- Build your selected Image
 - `$ bitbake -k core-image-minimal`
- (Detailed steps follow…)

bit.ly/YPS202105Intro
Configure build by editing local.conf

$HOME/yocto/build/conf/local.conf

- Set appropriate MACHINE, DL_DIR and SSTATE_DIR
- Add the following to the bottom of local.conf

MACHINE = "qemuaarm"
DL_DIR = "${TOPDIR}/../downloads"
SSTATE_DIR = "${TOPDIR}/../sstate-cache/${MACHINE}"

Notice how you can use variables in setting these values
Building an Embedded Image

➢ This builds an entire embedded Linux distribution
➢ Choose from one of the available Images
➢ The following builds a minimal embedded target

 $ bitbake -k core-image-minimal

➢ On a fast computer the first build may take the better part of an hour on a slow machine multiple ...
➢ The next time you build it (with no changes) it may take as little as 5 mins (due to the shared state cache)
Booting Your Image with QEMU

➢ The `runqemu` script is used to boot the image with QEMU
➢ It auto-detects settings as much as possible, enabling the following command to boot our reference images:

```bash
$ runqemu qemuarm [nographic]
```

❖ Use `nographic` if using a non-graphical session (ssh), do not type the square brackets

➢ Replace `qemuarm` with your value of `MACHINE`
➢ Your QEMU instance should boot
➢ Quit by closing the qemu window
➢ If using “nographic”, kill it from another terminal:

```bash
$ killall qemu-system-arm
```
LAYERS

This section will introduce the concept of layers and how important they are in the overall build architecture
Layers

- Metadata is provided in a series of layers which allow you to override any value without editing the originally provided files.
- A layer is a logical collection of metadata in the form of recipes.
- A layer is used to represent oe-core, a Board Support Package (BSP), an application stack, and your new code.
- All layers have a priority and can override policy, metadata and config settings of layers with a lesser priority.
Layer Hierarchy

- Developer layer(s)
- Commercial layers (OSV or middleware)
- UI/GUI layer
- BSP layer
- meta-poky
- meta (oe-core)
Using Layers

Layers are added to your build by inserting them into the BBLAYERS variable within your bblayers file

```bash
$HOME/yocto/build/conf/bblayers.conf
```

```
BBLAYERS  ?= "
  ${HOME}/yocto/poky/meta
  ${HOME}/yocto/poky/meta-poky
  ${HOME}/yocto/poky/meta-yocto-bsp
"
```

bit.ly/YPS202105Intro
Board Support Packages

➢ BSPs are layers to enable support for specific hardware platforms
➢ Defines machine configuration variables for the board (MACHINE)
➢ Adds machine-specific recipes and customizations
 ♦ Boot loader
 ♦ Kernel config
 ♦ Graphics drivers (e.g, Xorg)
 ♦ Additional recipes to support hardware features
Notes on using Layers

➢ When doing development with Yocto, **do not edit files within the Poky source tree**
➢ Use a new custom layer for modularity and maintainability
➢ Layers also allow you to easily port from one version of Yocto/Poky to the next version
Creating a Custom Layer

- Layers can be created manually
- They all start with “meta-” by convention
- However using the `yocto-layer` tool is easier

  ```
  $ yocto-layer create ypdd
  ```
 - This will create `meta-ypdd` in the current dir
- For Board Support Package Layers there is the `yocto-bsp` tool

  ```
  $ yocto-bsp create mybsp arm
  ```
 - This will create `meta-mybsp` in the current dir
Create a Custom Layer

$ cd yocto
yocto$ source poky/oe-init-build-env build
yocto/build$ bitbake-layers create ypdd
Please enter the layer priority you'd like to use for the layer: [default: 6] 6
Would you like to have an example recipe created? (y/n) [default: n] y
Please enter the name you'd like to use for your example recipe: [default: example] example
Would you like to have an example bbappend file created? (y/n) [default: n] n

New layer created in meta-ypdd.

Don't forget to add it to your BBLAYERS (for details see meta-ypdd\README).
yocto/build$
The new Custom Layer

```
yocto/build$ tree meta-ypdd
meta-ypdd/
|--COPYING.MIT        (The license file)
|--README            (Starting point for README)
|--conf
| `--layer.conf      (Layer configuration file)
|--recipes-example   (A grouping of recipies)
  |--example        (The example package)
    |--example-0.1  (files for v0.1 of example)
    |    |--example.patch
    |    `--helloworld.c
    `--example_0.1.bb (The example recipe)
```
We have a conf and classes directory, add to BBPATH
BBPATH .= ":${LAYERDIR}"

We have recipes-* directories, add to BBFILES
BBFILES += "${LAYERDIR}/recipes-*/*//*.bb \
${LAYERDIR}/recipes-*/*//*.bbappend"

BBFILE_COLLECTIONS += "ypdd"
BBFILE_PATTERN_ypdd = "^${LAYERDIR}/"
BBFILE_PRIORITY_ypdd = "6"
Adding Layers to Your Build

➢ Add your layer to `bblayers.conf`
➢ `$HOME/yocto/build/conf/bblayers.conf`

```
BBLAYERS  ?= "
  ${HOME}/yocto/poky/meta
  ${HOME}/yocto/poky/meta-poky
  ${HOME}/yocto/poky/meta-yocto-bsp
  ${HOME}/yocto/build/meta-ypdd
"
```
Adding Layers to Your Build

> bitbake-layers --help
usage: bitbake-layers [-d] [-q] [--color COLOR] [-h] <subcommand> ...
BitBake layers utility
optional arguments:
 -d, --debug Enable debug output
 -q, --quiet Print only errors
 --color COLOR Colorize output (where COLOR is auto, always, never)
 -h, --help show this help message and exit
subcommands:
 <subcommand>
 layerindex-fetch Fetches a layer from a layer index along with its dependent layers, and adds them to conf/bblayers.conf.
 layerindex-show-depends Find layer dependencies from layer index.
 add-layer Add a layer to bblayers.conf.
 remove-layer Remove a layer from bblayers.conf.
 flatten flatten layer configuration into a separate output directory.
 show-layers show current configured layers.
 show-overlaid list overlaid recipes (where the same recipe exists in another layer)
 show-recipes list available recipes, showing the layer they are provided by
 show-appends list bbappend files and recipe files they apply to
 show-cross-depends Show dependencies between recipes that cross layer boundaries.
layers.openembedded.org

http://layers.openembedded.org

<<<<
Adding Layers to Your Build

➢ Add your layer to `bblayers.conf`

```
bitbake-layers add-layer \n  ${HOME}/yocto/build/meta-ypdd
```
Build Your New Recipe

➢ You can now build the new recipe

$ bitbake example

➢ This will now build the *example_0.1.bb* recipe which is found in

 meta-ypdd/recipes-example/example/example_0.1.bb

Note: Build fails w/o `${CFLAGS}` and `${LDFLAGS}` meanwhile (QA-error) in the recipe.
IMAGES

This section will introduce the concept of images; recipes which build embedded system images
What is an Image?

Building an image creates an entire Linux distribution from source

- Compiler, tools, libraries
- BSP: Bootloader, Kernel
- Root filesystem:
 - Base OS
 - services
 - Applications
 - etc
Extending an Image

➢ You often need to create your own Image recipe in order to add new packages or functionality
➢ With Yocto/OpenEmbedded it is always preferable to extend an existing recipe or inherit a class
➢ The simplest way is to inherit the core-image bbclass
➢ You add packages to the image by adding them to `IMAGE_INSTALL`
A Simple Image Recipe

➢ Create an **images** directory


  ```bash
  $ mkdir -p ${HOME}/yocto/build/meta-ypdd/recipes-core/images
  ```

➢ Create the image recipe

  ```bash
  $ vi ${HOME}/yocto/build/meta-ypdd/recipes-core/images/ypdd-image.bb
  ```

  ```makefile
  DESCRIPTION = "A core image for YPDD"
  LICENSE = "MIT"
  
  # Core files for basic console boot
  IMAGE_INSTALL = "packagegroup-core-boot"
  
  # Add our desired packages
  IMAGE_INSTALL += "psplash dropbear"
  
  inherit core-image
  
  IMAGE_ROOTFS_SIZE ?= "8192"
  ```
Build and Boot Your Custom Image

➢ Enable the `meta-ypdd` layer in your build
➢ Edit `conf/bblayers.conf` and add the path to `meta-ypdd` to the `BBLAYERS` variable declaration

(example in the next slide)
Add Your Layer

➢ Make sure your layer is added to BBLAYERS in bblayers.conf

```
$HOME/yocto/build/conf/bblayers.conf
BBLAYERS  ?= "
    ${HOME}/yocto/poky/meta
    ${HOME}/yocto/poky/meta-poky
    ${HOME}/yocto/poky/meta-yocto-bsp
    ${HOME}/yocto/build/meta-ypdd
"  
➢ (We already did this step in a previous section manually and with bitbake-layers add-layer.)
```
Build and Boot Your Custom Image

➢ Build your custom image:

$ bitbake ypdd-image

(If your SSTATE_DIR is configured correctly from a previous build this should take less than 5 minutes)

➢ Boot the image with QEMU:

$ runqemu qemuarm \
 tmp/deploy/images/qemuarm/ypdd-image-qemuarm.ext4 \
 [nographic]

Use nographic if using ssh environment
Build and Boot Your Custom Image

➢ Verify that dropbear ssh server is present

$ which dropbear

➢ If you used the graphical invocation of QEMU using VNC viewer, you will see the splash screen on boot.
Toaster

The following section introduces toaster
Recent builds

- **core-image-sato (+3) qemu88**: ETA: 16:34
- **core-image-minimal qemuarm**: ETA: 15:52
- **core-image-sato atom-pc (15:22)**: 4 warnings, Build time: 00:36:55
- **core-image-x11 qemu86 (12:01)**: 3 errors, 10 warnings, Build time: 00:27:45
- **core-image-sato atom-pc (11:54)**: 4 warnings, Build time: 00:36:55

All builds

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Target</th>
<th>Machine</th>
<th>Completed on</th>
<th>Failed tasks</th>
<th>Errors</th>
<th>Warnings</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
<td>core-image-sato</td>
<td>atom-pc</td>
<td>11/06/13 at 15:22</td>
<td></td>
<td></td>
<td></td>
<td>ext3, hddimg, iso, tar.bz2</td>
</tr>
<tr>
<td>✔️</td>
<td>core-image-x11</td>
<td>qemu86</td>
<td>11/06/13 at 12:01</td>
<td>acl_2.2.51-3 do configuration</td>
<td>3 errors</td>
<td>10 warnings</td>
<td>ext3, hddimg, iso, tar.bz2</td>
</tr>
<tr>
<td>✔️</td>
<td>core-image-sato</td>
<td>atom-pc</td>
<td>11/06/13 at 11:54</td>
<td></td>
<td></td>
<td></td>
<td>ext3, hddimg, iso, tar.bz2</td>
</tr>
</tbody>
</table>
1. **Download clone poky git repo:**
   ```bash
   $ mkdir -p ${HOME}/toaster ; cd ${HOME}/toaster
   $ git clone -b dunfell git://git.yoctoproject.org/poky
   # Note: git checkout is required by toaster - do not use the release tarball
   ```

2. **Download/install dependencies:**
   ```bash
   $ sudo apt-get install python-virtualenv
   $ virtualenv venv
   $ source venv/bin/activate                # you’ll have to activate it every time to enter the environment
   (venv)$ pip3 install -r poky/bitbake/toaster-requirements.txt
   ```

3. **Start toaster:**
   ```bash
   (venv)$ source poky/oe-init-build-env toasterprjdir
   (venv)$ source toaster start          # wait 2 minutes …
   ```

4. **Profit!!! (well... actually there is more work to do...)**
   ```bash
   $ firefox http://localhost:8000
   ```
This is Toaster

A web interface to OpenEmbedded and BitBake, the Yocto Project build system.

To start building, create your first Toaster project

Read the Toaster manual
Contribute to Toaster
Create new build ...

Create a new project

Create a new project

Project name (required)

test

Release

Yocto Project 2.3 “Pyro”

Toaster will run your builds using the tip of the Yocto Project Pyro branch.

Machine

Machine changes have a big impact on build quality and the machine with the previous ones.

qemuarm

Save

Cancel

View compatible machines

core-image-minima

Build

core-image-minimal [openembedded-core]
core-image-minimal-dev [openembedded-core]
core-image-minimal-initramfs [openembedded-core]
core-image-minimal-mtdutils [openembedded-core]
Toaster demo/walkthrough

➢ Main page
➢ Create new project
➢ Select Machine
➢ Add custom layers or recipes
➢ Build an image
➢ Image
➢ Image manifest
BUILD AN APPLICATION

Adding a "hello world" application to our custom image
Building an Application

➢ General procedure:
 ◆ Write hello world application (`hello.c`)
 ◆ Create recipe for hello world application
 ◆ Modify image recipe to add hello world application to your image

➢ What follows is the example of a simple one C file application

➢ (Building a more complicated recipe from a tarball would specify how to find the upstream source with the `SRC_URI`)
Add Application Code

➢ For a simple one C file package, you can add the hello application source to a directory called *files* in the *hello* package directory

```bash
$ mkdir -p ${HOME}/yocto/build/meta-ypdd/recipes-core/hello/files
$ vi /scratch/sandbox/meta-ypdd/recipes-core/hello/files/hello.c
```
```c
#include <stdio.h>

int main(int argc, char **argv) {
    printf("Hello World\n");
    return 0;
}
```
Add Application Recipe

➢ Write hello world recipe
➢ Create directory to hold the recipe and associated files

$ mkdir -p ${HOME}/yocto/build/meta-ypdd/recipes-core/hello
 - (We actually did this already in the previous step)

➢ Create hello_1.0.bb (next slide)

$ vi ${HOME}/yocto/build/meta-ypdd/recipes-core/hello/hello_1.0.bb
DESCRIPTION = "Hello World example"
LICENSE = "MIT"

LIC_FILES_CHKSUM =
"file://${COREBASE}/meta/COPYING.MIT;md5=3da9cfbcb788c80a0384361b4de20420"

S = "${WORKDIR}"

SRC_URI = "file://hello.c"

do_compile() {
 ${CC} ${CFLAGS} ${LDFLAGS} hello.c -o hello
}

do_install() {
 install -d -m 0755 ${D}/${bindir}
 install -m 0755 hello ${D}/${bindir}/hello
}
Add Application to the Image

➢ Modify image recipe to add hello world application to your image
➢ See example on next slide
Add hello to Image

$ vi ${HOME}/yocto/build/meta-ypdd/recipes-core/images/ypdd-image.bb

DESCRIPTION = "A core image for YPDD"
LICENSE = "MIT"

Core files for basic console boot
IMAGE_INSTALL = "packagegroup-core-boot"

Add our desired extra files
IMAGE_INSTALL += "psplash dropbear hello"

inherit core-image

IMAGE_ROOTFS_SIZE ?= "8192"
Build and Test Application

➢ Now (re)build your image recipe

$ bitbake ypdd-image
 • hello_1.0.bb will be processed because it is in your custom layer, and referenced in your image recipe.

➢ Boot your image using runqemu, as before:

$ runqemu qemuarm tmp/deploy/images/\qemuarm/ypdd-image-qemuarm.ext4 nographic

➢ You should be able to type "hello" at the command line and see "Hello World"
It’s not an Embedded Linux Distribution

It Creates a Custom One For You
Embedded Linux Development with Yocto Project
Training from The Linux Foundation

Want to learn how to use Yocto Project like a Pro?
https://training.linuxfoundation.org/

Embedded Linux Platform Development with Yocto Project
TIPS HINTS AND OTHER RESOURCES

The following slides contain reference material that will help you climb the Yocto Project learning curve
Common Gotchas When Getting Started

➢ Working behind a network proxy? Please follow this guide:
 − https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

➢ Do not try to re-use the same shell environment when moving between copies of the build system

➢ oe-init-build-env script appends to your $PATH, its results are cumulative and can cause unpredictable build errors

➢ Do not try to share sstate-cache between hosts running different Linux distros even if they say it works
The Yocto Project is an open source project, and aims to deliver an open standard for the embedded Linux community and industry.

Development is done in the open through public mailing lists: openembedded-core@lists.openembedded.org, poky@yoctoproject.org, and yocto@yoctoproject.org.

And public code repositories:
- http://git.yoctoproject.org
- http://git.openembedded.org

Bug reports and feature requests:
- http://bugzilla.yoctoproject.org
Tip: ack-grep

➢ Much faster than grep for the relevant use cases
➢ Designed for code search
➢ Searches only relevant files
 - Knows about many types: C, asm, perl
 - By default, skips .git, .svn, etc.
 - Can be taught arbitrary types
➢ Perfect for searching metadata
Tip: ack-grep

```bash
$ bback "SRC_URI ="
```

```bash
6:SRC_URI = "${{GNU_MIRROR}}/hello/hello.bb

documentation/ref-manual/examples/hello-single/hello.bb
documentation/ref-manual/examples/mtd-makefile/mtd-utils_1.0.0.bb

meta/classes/bin_package.bbclass
15:# SRC_URI = "http://foo.com/foo-1.0-r1.i586.rpm;subdir=foo-1.0"

```

```bash
20:SRC_URI = ""
```

```bash
meta/classes/externalsrc.bbclass
```

```bash
8:SRC_URI = "${{GNOME_MIRROR}}/${{BPN}}/${{@gnome_verdir("${{PV}}")}}/${{BPN}}-
```

```bash
alias bback='ack-grep --type bitbake'
```
TIP: VIM Syntax Highlighting

- https://github.com/openembedded/bitbake/tree/master/contrib/vim
- Install files from the above repo in ~/.vim/
- Add "syntax on" in ~/.vimrc

```
$ tree ~/.vim/
/Users/chris/.vim/
    ├── ftdetect
    │       └── bitbake.vim
    ├── ftplugin
    │       └── bitbake.vim
    └── plugin
          └── newbb.vim
    syntax
          └── bitbake.vim
```
TIP: VIM Syntax Highlighting
Lab: yocto for the minnowboard

The following section introduces the minnowboard as example hardware. Other boards like the Beaglebone are supported in a similar manner.
1. **Download poky tool:**

   ```
   $ mkdir -p ${HOME}/myproject
   $ cd ${HOME}/myproject
   $ wget -nd -c "http://downloads.yoctoproject.org/releases/yocto/yocto-3.1.3/poky-dunfell-23.0.3.tar.bz2"
   $ tar -xf poky-dunfell-23.0.3.tar.bz2
   ```

2. **Download meta-intel layer:**

   ```
   $ wget -nd -c "http://git.yoctoproject.org/cgit/cgit.cgi/meta-intel/snapshot/meta-intel-13.2-dunfell-3.1.3.tar.bz2"
   $ tar -xf meta-intel-13.2-dunfell-3.1.3.tar.bz2
   ```

3. **Configure:**

   ```
   $ source poky-dunfell-23.0.3/oe-init-build-env mybuild
   $ echo "BBLAYERS += "$(pwd)/../meta-intel-13.2-dunfell-3.1.3 " " >> conf/bblayers.conf
   $ echo 'MACHINE = "intel-corei7-64" ' >> conf/local.conf
   ```

4. **Build the image:**

   ```
   $ bitbake core-image-minimal
   ```

5. **Profit!!!** (well... actually there is more work to do...)
the minnowboard

- reset switch
- Serial port header
- HDMI
- SD-Card slot
- Power connector
SD-card installation

➢ $ cd tmp/deploy/images/intel-corei7-64/

➢ $ dd if=core-image-minimal-intel-corei7-64.hddimg of=/dev/<YourSDCard> bs=1M
 or

➢ $ dd if=core-image-minimal-intel-corei7-64.wic of=/dev/<YourSDCard> bs=1M

➢ Connect to the serial and boot.
Hands-on Lab

➢ Wire-up your minnow

➢ Use the ready-made SD-Cards

➢ Connect to the serial and boot
 $ FS0:
 $ EFI/boot/bootx86.efi

➢ Extra labs:
 ○ Check-out the board with a hello-world.c (compiled on the board itself)
 ○ Homework: to it right and build hello-world.c in a recipe, include it in your image and boot that.
The other boards ...
YP for the dragonboard 410c

The following section introduces the dragonboard as example hardware.
The dragonboard uses a 3rd-party repository.

1. **Download repo tool:**

 $ mkdir -p ${HOME}/bin
 $ curl https://storage.googleapis.com/git-repo-downloads/repo > ${HOME}/bin/repo
 $ chmod a+x ${HOME}/bin/repo
 $ export PATH=${HOME}/bin:${PATH}

2. **Download the repositories with repo:**

 $ mkdir oe-qcom && cd oe-qcom
 $ repo init -u https://github.com/96boards/oe-rpb-manifest.git -b dunfell
 $ repo sync
 $ source setup-environment # SELECT the dragonboard

3. **Build the image:**

 $ bitbake core-image-minimal

4. **Profit!!!** (well... actually there is more work to do...)
the dragonboard

- Low Speed Expansion (attach usb-serial daughterboard here)
- SD-Card slot
- Power connector
- micro-usb (fastboot)
- fastboot switch during power-on
serial port options

1. 96Boards UART Serial Adapter
 ◆ http://linaro.co/uart-seeed
 ◆ ships from china (seeed)

2. 1.8V (!!) serial cable (can be hard to get)
 ◆ e.g. FTDI TTL-232RG-VREG1V8
 ◆ e.g. http://usb2serialcables.com/

3. Level converter + usual 3.3V or 5V usb-serial cable
 ◆ SparkFun Voltage-Level Translator Breakout - TXB0104
YP for the beaglebone

The following section introduces the beaglebone as example hardware.
1. **Download poky tool:**
   ```
   $ mkdir -p ${HOME}/myproject
   $ cd ${HOME}/myproject
   $ wget -nd -c "http://downloads.yoctoproject.org/releases/yocto/yocto-3.1.3/poky-dunfell-23.0.3.tar.bz2"
   $ tar -xf poky-dunfell-23.0.3.tar.bz2
   ```

2. **Configure:**
   ```
   $ source poky-dunfell-23.0.3/oe-init-build-env mybuild
   $ echo 'MACHINE = "beaglebone"' >> conf/local.conf
   ```

3. **Build the image:**
   ```
   $ bitbake core-image-minimal
   ```

4. **Profit!!!** (well… actually there is more work to do...)
HAVE FUN and thank you for joining!
Image was created with:
meta-intel layer (add to bblayers.conf)
and these in conf/local.conf:

MACHINE = "intel-corei7-64"
EXTRA_IMAGE_FEATURES = "debug-tweaks tools-debug eclipse-debug tools-sdk tools-profile tools-testapps dev-pkgs ptest-pkgs"