
Building a Network Operating
System using Linux and Yocto

John Mehaffey

Introduction

ArubaOS-CX (Code name Halon) is a Network
Operating System (NOS) based on Openswitch.

It uses Linux as its base (kernel and userland),
and Yocto as the build system.

This talk will discuss the challenges of
combining the three open source technologies.

Linux Kernel

Kernel Size

The Linux kernel is extremely configurable, the trick
is finding the correct combination of features and
tables that accomplish the work needed.
• Start small, work up
• Use Yocto layers to add platform dependent features
• Aggressively trim dependent kernels (e.g. kexec)
• Use busybox, add real packages only when necessary
• Share RAM for functions needed at different times

– e.g. packet buffers, core dumps

Kernel Updates

Kernel updates are one of the most
important and most intrusive functions of
Devops. Openswitch started with kernel 4.4,
and Halon migrated to all of the LTS kernels
available in Yocto along the way.

Kernel Updates (continued)

Kernel updates provide critical bug fixes, CVE
mitigations, and new features, but also
provide a convenient excuse for problems.

Ex: upgrading from 4.4 to 4.9 provided 18 (!)
bugs blamed on the kernel. 9 were actually
code/design flaws exposed by the upgrade,
only 2 were actual kernel issues.

Kernel Updates (continued)

Management perception is guided by initial
reports, and resulted in questions about why
are we upgrading if it breaks our code.

Lots of time spent explaining perception vs
reality, but it set the stage for future
upgrades, which went more smoothly.

Yocto

Yocto Layers

Yocto layers are used extensively in Halon:
• Poky layers: for the basics
• Openembedded layers: per-subsystem
• Meta-foss: opensource packages
• Halon-common: boot loader and OS
• Halon-distro: for all Halon platforms
• platform-dependent

Yocto Upgrades

Yocto upgrades are a lot harder to justify
than kernel upgrades.

• Management always wants to delay painful issues.
• Must be persistent. Make sure you are ready with

upgrades before major branches, to go in before things
settle.

Yocto Upgrades

Subsystem upgrades

Subsystem Upgrades

Upgrades of large subsystems (ASIC SDKs,
Metaswitch, etc.) have similar issues to other
upgrades mentioned already
• Use merge commits
• Make sure you save the SHA before/after
• Useful to have images before/after for

triage/comparison

Build

Build Issues

Halon uses:
 527 poky packages
 122 foss packages
 276 kernel modules
 518 custom packages
 2 architectures/8 variants

Build Issues

Build times varied widely throughout
development, between 10 minutes and 4
hours.
Many experiments were tried to reduce build
times.
Biggest remaining issue is DEPENDS chains
that cause extensive rebuilds.

PCI

PCI Issues

PCI turned out to be one of our biggest
engineering issues, due to HA requirements.

The architecture requires the modular line
cards to remain up (passing traffic) during
CPU failover events.

PCI Architecture

Active CPU Standby CPU

NTB NTB

LC1 LCn. . .

.

PCI Issues

• LCs have CPUs running transport layer. TL would starve
and timeout during periods of high DMA traffic on PCI links.
• Needed fair share algorithm.

• PCI drivers would miss interrupts and lock up.
• Use polling

• Active/Standby failover would cause other issues
• Reset links on failover. Changed to EoP. KISS!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

