
Embedded Linux Conference 2015

An Overview of
the DMAEngine
Subsystem
Maxime Ripard
Free Electrons
maxime@free-electrons.com

c© Copyright 2004-2015, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 1/29



Maxime Ripard

I Embedded Linux engineer and trainer at Free Electrons
I Embedded Linux development: kernel and driver

development, system integration, boot time and power
consumption optimization, consulting, etc.

I Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

I http://free-electrons.com

I Contributions
I Kernel support for the sunXi SoCs from Allwinner
I Contributor to few open-source projects, Buildroot, an

open-source, simple and fast embedded Linux build system,
Barebox, a modern bootloader.

I Living in Toulouse, south west of France

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 2/29

http://free-electrons.com


An Overview of the DMAEngine Subsystem

Introduction

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 3/29



Peripheral DMA vs...

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 4/29



... DMA Controllers

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 5/29



Transfer Width

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 6/29



Burst Size

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 7/29



Scatter Gather

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 8/29



Scatter Gather Descriptors

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 9/29



Cyclic Transfers

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 10/29



Realistic DMA Controller

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 11/29



An Overview of the DMAEngine Subsystem

Linux Support

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 12/29



APIs

I DMAEngine
I Merged in 2006, in 2.6.18
I Subsystem to handle memory-to-device transfers

I Async TX
I Merged in 2007, in 2.6.23
I Initially part of the raid5 code to support the XScale offload

engines
I Subsystem to handle memory to memory operations (memcpy,

XOR, etc.)
I Implemented on top of dmaengine, but takes many shortcuts,

instead of being a real client.

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 13/29



Slave consumer API

1. Request a channel: dma_request_channel, or one of its
variants

2. Configure the channel for our use: dmaengine_slave_config

3. Get a transaction descriptor for our transfer:
dmaengine_prep_*

4. Put the transaction in the driver pending queue:
dmaengine_submit

5. Issue pending requests (blocks and calls back your driver to
give an update on the transfer status):
dmaengine_issue_pending

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 14/29



An Overview of the DMAEngine Subsystem

Slave Controller Drivers

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 15/29



struct dma_device and its Fields

I DMAEngine, like any framework, relies on a structure you
have to fill with various pieces of information in order to do its
job properly

I Mostly:

channels Initialized list of the supported channels. The
size of the list is the number of channels
supported by your driver

* align Alignment in bytes for the Async TX buffers

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 16/29



DMA Transfer Types 1/2

I The next step is to set which transfer types your driver
supports

I This is done through the function dma_cap_set, which takes
various flags as an argument:

I DMA_MEMCPY
I Memory to memory copy

I DMA_SG
I Memory to memory scatter gather

I DMA_INTERLEAVE
I Memory to memory interleaved transfer

I DMA_XOR
I Memory to memory XOR

I DMA_XOR_VAL
I Memory buffer parity check using XOR

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 17/29



DMA Transfer Types 2/2

I DMA_PQ
I Memory to memory P+Q computation

I DMA_PQ_VAL
I Memory buffer parity check using P+Q

I DMA_INTERRUPT
I The device is able to generate a dummy transfer that will

generate interrupts

I DMA_SLAVE
I Memory to device transfers

I DMA_CYCLIC
I The device is able to handle cyclic transfers

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 18/29



Weird Transfer Types

I DMA_PRIVATE
I Async TX doesn’t go through dma_request_channel but

circumvents it, and just starts using any random channel it can
I It does so unless you set this flag

I DMA_ASYNC_TX
I Set by the core when you support all Async TX transfer types
I Used only if ASYNC_TX_ENABLE_CHANNEL_SWITCH is enabled
I Used by dma_find_channel, which is a non-exclusive

equivalent of dma_request_channel, used only by Async TX

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 19/29



Channels Resources Allocation

I device_alloc_chan_resources and
device_free_chan_resources

I Called by the framework when your channel is first requested

I Allows to allocate custom resources for your channel, and free
them when you’re done

I Optional (since 3.20)

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 20/29



Transaction Descriptor Retrieval Functions

I device_prep_dma_*

I Optional, but have to match the transfer types you declared

I Should create both the software descriptor, for Linux and
clients to identify the transfer, and the hardware descriptor
matching it for the dma controller

I Should also ensure that the parameters of this transfer match
what the driver supports

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 21/29



Submitting Pending Jobs

I device_issue_pending

I Should take the first descriptor of the transaction and start it

I Should go through all the descriptors in the list, notifying the
client using an optional callback that the transfer is done

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 22/29



Transfer Status Reporting

I device_tx_status

I Reports the current state of a given transaction descriptor

I Does so using the dma_set_residue function, and returns
only a flag saying whether it’s done or in progress

I This is where the granularity we used earlier comes into action.

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 23/29



Channel configuration

I device_control

I Takes an additional flag, that represents the action to perform
on the channel

I DMA_PAUSE
I Pauses a given channel

I DMA_RESUME
I Resumes a given channel

I DMA_TERMINATE_ALL
I Aborts all transfers on a given channel

I DMA_SLAVE_CONFIG
I Configures a given channel with new parameters

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 24/29



Capabilities

I device_slave_caps

I Returns various pieces of information about the controller
I Can the transfer be paused? terminated?
I Which transfer widths are supported?
I Which slave directions are supported?

I Used by generic layers to get an idea of what the device
they’re going to use is capable of (only ASoC so far)

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 25/29



An Overview of the DMAEngine Subsystem

Recent Developments

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 26/29



Generic Capabilities (4.0)

I Removed device_slave_caps, and moved the logic in the
framework itself

I Introduction of new variables in struct dma_device

* width Bitmask of supported transfer width, both as
source and destination

directions Bitmask of the supported slave directions
(memory to device, device to memory, device to
device)

granularity Granularity of the transfer residue your controller
can provide: bursts, chunks or descriptors

I Split of the device_control function in four independent
functions: device_config, device_pause, device_resume,
device_terminate_all

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 27/29



Scheduled DMA

I Many DMA controllers have more requests than channels

I These drivers usually have all the scheduling code

I Plus, every driver has a lot of administrative code, that is not
trivial to get right (callback deferral, allocation of the
descriptors, etc.), yet similar from one driver to another

I The Scheduled DMA framework abstracts away most of it,
and only a few things remain in the drivers:

I Interrupt management
I LLI related functions (iterators, configuration, etc.)
I Scheduling hints
I Channel management (pause, resume, residues, etc.)

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 28/29



Questions?

Maxime Ripard
maxime@free-electrons.com

Slides under CC-BY-SA 3.0
http://free-electrons.com/pub/conferences/2015/elc/ripard-dmaengine

Free Electrons. Kernel, drivers, embedded Linux and Android - Development, consulting, training and support. http://free-electrons.com 29/29

http://free-electrons.com/pub/conferences/2015/elc/ripard-dmaengine

	An Overview of the DMAEngine Subsystem
	Introduction
	Linux Support
	Slave Controller Drivers
	Recent Developments


