
https://www.pengutronix.de

Authenticated and Encrypted Storage
on Embedded Linux

ELC Europe 2019

Jan Lübbe – jlu@pengutronix.de

 2/21

Linux Storage Stack

 3/21

Transparent Authentication and Encryption

https://www.pengutronix.de

Crypto‽

https://www.instructables.com/id/Laser-Cut-Cryptex/

https://www.instructables.com/id/Laser-Cut-Cryptex/
https://www.instructables.com/id/Laser-Cut-Cryptex/

 5/21

Hash: one-way function, fixed output size (SHA*)

HMAC: data authentication using hash and shared secret

Signature: data authentication using public key cryptography
(keys & certificates, RSA & ECDSA)

Unauthenticated encryption: attacker can‘t read private data,
but could modify it (AES-CBC, AES-XTS, …)

Authenticated encryption: attacker can‘t read private data
and modification is detected (AEAD: AES GCM, AEGIS)

Quick Crypto Refresher

 6/21

Overview

 Building Blocks
 authentication
 encryption
 authenticated encryption

 General Considerations

 7/21

dm-verity (since 2012, v3.4)

 authentication via hash tree: read-only
 used by Chrome OS & Android for rootfs
 root hash provided via out-of-band (kernel

cmdline) or via signature in super block (since 5.4)
 can be created and configured via veritysetup (LUKS2)
 combine with ext4, SquashFS or EROFS

 ⇒ best choice for RO data

filesystem
dm-verity hash

tree

hash-tree image

 8/21

fsverity (since 2019, v5.4)

 “dm-verity for files”: efficient authentication of (large) read-
only files via a hash tree

 root hash provided out-of-band
 integrated into ext4
 could be integrated with IMA/EVM to improve performance

 ⇒ Android will likely be the main user (for .apk authentication)

 9/21

dm-integrity (since 2017, v4.12)

 emulates integrity data on normal
block devices

 performance overhead (data written
twice due to journaling)

 one meta-data block per n data blocks, interleaved
 can provide simple check-sums without encryption

(CRC32/SHA256/-HMAC)
 usually configured via integritysetup (LUKS2)

block device

journal
& MDdm-integrity

filesystem

 10/21

dm-crypt

 sector-based encryption of block devices
 supports multiple algorithms and modes
 usually configured using cryptsetup (LUKS2)

 experimental online reencryption

 does not authenticate, because that would need additional
space (uses “length-preserving encryption”)

 ⇒ best choice on RW block devices (if auth is not critical)

filesystem
dm-crypt

 11/21

dm-crypt with authentication

 needs dm-integrity or block device with T10/DIF
 can also use a random initialization vector (IV)
 uses AEAD cipher modes:

 AES256-GCM-random, AEAD (12B IV, 16B auth tag)
 AEGIS128-random, AEAD (16B IV, 16B auth tag)
 ChaCha20-random, integrity Poly1305 (16B IV, 32B auth tag)

 only authenticates individual sectors, replay is possible

 ⇒ best choice on RW block devices for authenticated encryption

block device

journal
& MDdm-integrity

dm-crypt
filesystem

auth
data

 12/21

fscrypt

 initially ext4-only (2015), then F2FS, generalized in (2016, v4.6),
UBIFS support (2017, v4.10)

 file-based encryption, supports different keys for multiple
users

 files can be removed without key
 no authentication

 ⇒ alternative to dm-crypt for multi-user systems (like Android)

 13/21

ecryptfs (since 2006, v2.6.19)

 stacked file system (problems)
 default home directory encryption method for Ubuntu

beginning with 9.04, now deprecated, maintenance unclear
 no authentication, GCM patches posted, but not merged
 encrypts data and filenames

 ⇒ superseded by fscrypt

ecryptfs
filesystem
strorage

 14/21

IMA/EVM (since 2009/2011, v2.6.30/v3.2)

 initially developed for usage with TPMs, Verified Boot and
Remote Attestation

 uses extended attributes
 EVM appraisal can protect against file data modification, but

currently not against directory modification (cp /bin/sh
/sbin/init)

 ⇒ IMA for remote attestation, EVM is problematic for local auth.

 15/21

UBIFS Authentication (since 2018, v4.20)

 UBIFS is copy-on-write (because flash): a “wandering tree”
 Hashes added to tree nodes
 root hash (in superblock) authenticated via HMAC or

signature for image deployment (since v5.3)
 is the only FS which authenticates full data and metadata

 ⇒ best choice for raw NAND/MTD devices

 16/21

Master Key Storage

How can we protect the key that protects the data?
 embedded: no user to enter a password
 Many SoCs have HW that can “wrap” (encrypt) keys with a

fixed per-device key (only useful with secure boot)
 Other options: OP-TEE or TPM

See Gilad Ben Yossefs talk on hardware protected keys (earlier
today): https://sched.co/TLJE

https://sched.co/TLJE
https://sched.co/TLJE

 17/21

Recovery: Split RO and RW?

Authenticated, writable storage can only detect offline attacks!
 no difference between intentional and malicious

modification (possibly caused by root-level intrusion)

 ⇒ signed root file system allows recovery via reboot

 ⇒ read-only recovery system allows factory reset

 18/21

Field Return Mode

How can we analyze problems on returned hardware?

 ⇒ implement authenticated method to:
 erase keys for private data
 disable verified boot

 19/21

Recommendations

 dm-crypt (maybe with dm-integrity) for RW block device
 dm-veritiy for RO data
 UBIFS authentication for NAND
 secure boot and key wrapping for master key protection
 HW acceleration for ciphers

 ⇒ avoid complexity, select only the necessary components

https://www.pengutronix.de

Thanks!

Questions?

 21/21

Further Reading

dm-verity: https://gitlab.com/cryptsetup/cryptsetup/wikis/DMVerity

dm-integrity: https://gitlab.com/cryptsetup/cryptsetup/wikis/DMIntegrity

dm-crypt+dm-integrity: https://arxiv.org/abs/1807.00309

fscrypt: https://www.kernel.org/doc/html/latest/filesystems/fscrypt.html

fsverity: https://www.kernel.org/doc/html/latest/filesystems/fsverity.html

ubifs auth: https://www.kernel.org/doc/html/latest/filesystems/ubifs-authentication.html

https://gitlab.com/cryptsetup/cryptsetup/wikis/DMVerity
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMIntegrity
https://arxiv.org/abs/1807.00309
https://www.kernel.org/doc/html/latest/filesystems/fscrypt.html
https://www.kernel.org/doc/html/latest/filesystems/fsverity.html
https://www.kernel.org/doc/html/latest/filesystems/ubifs-authentication.html
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMVerity
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMIntegrity
https://arxiv.org/abs/1807.00309
https://www.kernel.org/doc/html/latest/filesystems/fscrypt.html
https://www.kernel.org/doc/html/latest/filesystems/fsverity.html
https://www.kernel.org/doc/html/latest/filesystems/ubifs-authentication.html

https://www.pengutronix.de

Authenticated and Encrypted Storage
on Embedded Linux

ELC Europe 2019

Jan Lübbe – jlu@pengutronix.de

 2/21

Linux Storage Stack

 3/21

Transparent Authentication and Encryption

we only look at kernel infra,
transparent for applications

audience: developers, need to decide
between tools
often only one correct choice for a

given project

https://www.pengutronix.de

Crypto‽

https://www.instructables.com/id/Laser-Cut-Cryptex/

 5/21

Hash: one-way function, fixed output size (SHA*)

HMAC: data authentication using hash and shared secret

Signature: data authentication using public key cryptography
(keys & certificates, RSA & ECDSA)

Unauthenticated encryption: attacker can‘t read private data,
but could modify it (AES-CBC, AES-XTS, …)

Authenticated encryption: attacker can‘t read private data
and modification is detected (AEAD: AES GCM, AEGIS)

Quick Crypto Refresher

 6/21

Overview

 Building Blocks
 authentication
 encryption
 authenticated encryption

 General Considerations

 7/21

dm-verity (since 2012, v3.4)

 authentication via hash tree: read-only
 used by Chrome OS & Android for rootfs
 root hash provided via out-of-band (kernel

cmdline) or via signature in super block (since 5.4)
 can be created and configured via veritysetup (LUKS2)
 combine with ext4, SquashFS or EROFS

 ⇒ best choice for RO data

filesystem
dm-verity hash

tree

hash-tree image

 8/21

fsverity (since 2019, v5.4)

 “dm-verity for files”: efficient authentication of (large) read-
only files via a hash tree

 root hash provided out-of-band
 integrated into ext4
 could be integrated with IMA/EVM to improve performance

 ⇒ Android will likely be the main user (for .apk authentication)

 9/21

dm-integrity (since 2017, v4.12)

 emulates integrity data on normal
block devices

 performance overhead (data written
twice due to journaling)

 one meta-data block per n data blocks, interleaved
 can provide simple check-sums without encryption

(CRC32/SHA256/-HMAC)
 usually configured via integritysetup (LUKS2)

block device

journal
& MDdm-integrity

filesystem

 10/21

dm-crypt

 sector-based encryption of block devices
 supports multiple algorithms and modes
 usually configured using cryptsetup (LUKS2)

 experimental online reencryption

 does not authenticate, because that would need additional
space (uses “length-preserving encryption”)

 ⇒ best choice on RW block devices (if auth is not critical)

filesystem
dm-crypt

 11/21

dm-crypt with authentication

 needs dm-integrity or block device with T10/DIF
 can also use a random initialization vector (IV)
 uses AEAD cipher modes:

 AES256-GCM-random, AEAD (12B IV, 16B auth tag)
 AEGIS128-random, AEAD (16B IV, 16B auth tag)
 ChaCha20-random, integrity Poly1305 (16B IV, 32B auth tag)

 only authenticates individual sectors, replay is possible

 ⇒ best choice on RW block devices for authenticated encryption

block device

journal
& MDdm-integrity

dm-crypt
filesystem

auth
data

 12/21

fscrypt

 initially ext4-only (2015), then F2FS, generalized in (2016, v4.6),
UBIFS support (2017, v4.10)

 file-based encryption, supports different keys for multiple
users

 files can be removed without key
 no authentication

 ⇒ alternative to dm-crypt for multi-user systems (like Android)

 13/21

ecryptfs (since 2006, v2.6.19)

 stacked file system (problems)
 default home directory encryption method for Ubuntu

beginning with 9.04, now deprecated, maintenance unclear
 no authentication, GCM patches posted, but not merged
 encrypts data and filenames

 ⇒ superseded by fscrypt

ecryptfs
filesystem
strorage

 14/21

IMA/EVM (since 2009/2011, v2.6.30/v3.2)

 initially developed for usage with TPMs, Verified Boot and
Remote Attestation

 uses extended attributes
 EVM appraisal can protect against file data modification, but

currently not against directory modification (cp /bin/sh
/sbin/init)

 ⇒ IMA for remote attestation, EVM is problematic for local auth.

 15/21

UBIFS Authentication (since 2018, v4.20)

 UBIFS is copy-on-write (because flash): a “wandering tree”
 Hashes added to tree nodes
 root hash (in superblock) authenticated via HMAC or

signature for image deployment (since v5.3)
 is the only FS which authenticates full data and metadata

 ⇒ best choice for raw NAND/MTD devices

 16/21

Master Key Storage

How can we protect the key that protects the data?
 embedded: no user to enter a password
 Many SoCs have HW that can “wrap” (encrypt) keys with a

fixed per-device key (only useful with secure boot)
 Other options: OP-TEE or TPM

See Gilad Ben Yossefs talk on hardware protected keys (earlier
today): https://sched.co/TLJE

 17/21

Recovery: Split RO and RW?

Authenticated, writable storage can only detect offline attacks!
 no difference between intentional and malicious

modification (possibly caused by root-level intrusion)

 ⇒ signed root file system allows recovery via reboot

 ⇒ read-only recovery system allows factory reset

 18/21

Field Return Mode

How can we analyze problems on returned hardware?

 ⇒ implement authenticated method to:
 erase keys for private data
 disable verified boot

 19/21

Recommendations

 dm-crypt (maybe with dm-integrity) for RW block device
 dm-veritiy for RO data
 UBIFS authentication for NAND
 secure boot and key wrapping for master key protection
 HW acceleration for ciphers

 ⇒ avoid complexity, select only the necessary components

https://www.pengutronix.de

Thanks!

Questions?

 21/21

Further Reading

dm-verity: https://gitlab.com/cryptsetup/cryptsetup/wikis/DMVerity

dm-integrity: https://gitlab.com/cryptsetup/cryptsetup/wikis/DMIntegrity

dm-crypt+dm-integrity: https://arxiv.org/abs/1807.00309

fscrypt: https://www.kernel.org/doc/html/latest/filesystems/fscrypt.html

fsverity: https://www.kernel.org/doc/html/latest/filesystems/fsverity.html

ubifs auth: https://www.kernel.org/doc/html/latest/filesystems/ubifs-authentication.html

