
Solutions for Intelligent Devices

Dan Malek

Chief Technology
Officer

6 April 2009

Memory
A Most Precious Resource

Copyright 2008 Embedded Alley Solutions, Inc.

Copyright 2009 Embedded Alley Solutions, Inc.

Introduction

 Why Memory?

 Capacity isn't time-based

 If you need more, someone has to free

 CPU too slow, it just takes longer
 What to do?

 Protect my stash

 Ask Linux OS for assistance

Copyright 2009 Embedded Alley Solutions, Inc.

How Do We Do It?

 Cgroups Overview

 Memory Cgroup

 Memory Usage Notification
 Memory Cgroup Example

 Out of Memory (OOM) Killer

 Future Directions

Copyright 2009 Embedded Alley Solutions, Inc.

Cgroups Overview

 Referenced by several terms

 Containers (or Container Group)

 Control, Controller Group

 We'll just say “cgroups”

 What are cgroups?

 How do they work?

 Why do I care?

Copyright 2009 Embedded Alley Solutions, Inc.

What Are Cgroups?

 A mechanism for partitioning sets of tasks

 Managed in a mounted virtual file system

 Can create a group hierarchy

 Multiple groups within a tree

 Root of tree is management point for sub-trees

 No system cost if not used, insignificant when used

g_1/

/cgroup

g_0/

Copyright 2009 Embedded Alley Solutions, Inc.

How Do Cgroups Work?

 A resource controller is the
policy

 Tracks the reference counted
objects

 cpu usage

 cpu sets

 memory pages

 Works with a kernel subsystem
for resource management

Memory Cgroup

cgroups Linux
VM

resource
counters

Copyright 2009 Embedded Alley Solutions, Inc.

Why Do I Care?

 Powerful system resource management concept

 Resource consumers become part of the management

 OS doesn't have to guess (sometimes poorly)

 Thread priorities are just hints

 VM tuning knobs can be a research career

 Tuning moves to the application space

 Ill-behaved tasks in their own container

 Easily accommodate feature enhancement

 Sensible system tuning perspective

Linux Cgroup Implementation

 Mounted virtual file system (i.e. /cgroups/<restype>)

 echo pid > /cgroups/<restype>/<userclass>/tasks

 Easily and dynamically change resource controls

 echo pid > /cgroups/<restype>/<new_class>/tasks

 Threads can determine cgroup information

 /proc/<pid>/cgroup

Copyright 2009 Embedded Alley Solutions, Inc.

Memory Cgroup

 Memory Resource Controller

 Don't confuse with hardware memory controller

 Track RSS and page cache pages, swap cache option

 Reclaims through cgroup LRU

 Isolates memory behavior to a group of tasks

 Prevent “memory hungry” tasks from consuming entire
system memory resource

 Control memory consumption for virtualization

 Provide a protected container for critical embedded tasks

Copyright 2009 Embedded Alley Solutions, Inc.

Memory Usage Notification

 Previous, stand-alone /dev/mem_notify

 New approach builds upon the memory cgroup resource
tracking

 Kernel configuration option (CGROUP_MEM_NOTIFY)

 Select a cgroup usage limit notification percentage

 Percentage rather than absolute value

 Prevents need to update if cgroup is resized

 Task operates normally until notification

 Can block-wait until limit

 Can poll as part of normal processing

Copyright 2009 Embedded Alley Solutions, Inc.

Memory Notification Cgroup Example

 Create a virtual file system

 Set resource limits

 Memory allocation code fragment

 Notification thread code fragment

 Example program message output

Copyright 2009 Embedded Alley Solutions, Inc.

Create Virtual File System

 mkdir -p /cgroups/memcg

 mount -t cgroup none /cgroups/memcg -o memory

 mkdir /cgroups/memcg/0

 echo $$ > /cgroups/memcg/0/tasks

Copyright 2009 Embedded Alley Solutions, Inc.

Set Resource Limits

Copyright 2009 Embedded Alley Solutions, Inc.

ls /cgroups/memcg/0
 memory.failcnt memory.notify_limit_usage
 memory.force_empty memory.stat
 memory.limit_in_bytes memory.usage_in_bytes
 memory.max_usage_in_bytes notify_on_release
 memory.notify_limit_lowait tasks
 memory.notify_limit_percent

 Set the memory usage limit

 echo 10M > /cgroups/memcg/0/memory.limit_in_bytes

 Set the notification limit to 80%

 echo 80 > /cgroups/memcg/0/memory.notify_limit_percent

Memory Resource Notification Example

 Multi-threaded application

 Main thread allocates 10 segments
 Main thread frees segments if they still exist
 Continues in a loop

 Notification thread

 Blocks on memory.notify_limit_lowait

 Frees allocated segments until usage < limit

Copyright 2009 Embedded Alley Solutions, Inc.

Memory Allocation Code Fragment

Copyright 2009 Embedded Alley Solutions, Inc.

 k = 10;
 while (k-- > 0) {
 for(i = 0; i<NSEGS; i++) {
 if ((mp = malloc(SEGSIZE)) == NULL) {
 perror("malloc");
 exit(2);
 }
 memptr[i] = mp;
 for (j = 0; j < SEGSIZE; j++)
 *mp++ = j;
 printf("Alloc seg %d\n", i);
 sleep(5);
 }
 for(i = 0; i<NSEGS; i++) {
 if ((mp = memptr[i]) != NULL)
 free(mp);
 printf("Free seg %d\n", i);
 sleep(5);
 }
 }

Notification Thread Code Fragment

Copyright 2009 Embedded Alley Solutions, Inc.

 for (;;) {
 /* Open/read /cgroups/memcg/0/memory.notify_limit_lowait
 * Blocks while usage is below limit
 */
 percent = get_memcg_val("lowait");
 limit = get_memcg_val("percent");
 printf("Notify wakeup percent %d, limit %d\n", percent, limit);
 i = 0;
 do {
 if ((mp = memptr[i]) != NULL) {
 memptr[i] = NULL;
 free(mp);
 printf("Notify free seg %d\n", i);
 }
 i++;
 usage = get_memcg_val("usage");
 } while ((usage > limit) && (i < NSEGS));
 }

Example Program Message Output

Copyright 2009 Embedded Alley Solutions, Inc.

 Alloc seg 0
 Alloc seg 1
 Alloc seg 2
 Alloc seg 3
 Alloc seg 4
 Alloc seg 5
 Notify wakeup percent 80, limit 80
 Notify free seg 0
 Alloc seg 6
 Notify wakeup percent 80, limit 80
 Notify free seg 1
 Alloc seg 7
 Notify wakeup percent 80, limit 80
 Notify free seg 2
 Alloc seg 8
 Notify wakeup percent 80, limit 80
 Notify free seg 3
 Alloc seg 9
 Free seg 0
 Free seg 1
 Free seg 2
 and continues

Memory Resource Controller Challenges

 Moving a task doesn't migrate old allocations

 Reclaims will deplete old cgroup allocation

 New allocation charge to new cgroup

 Notification doesn't carry information

 Normally, wake up is due to reaching notify limit

 Wake up on thread migrate to new cgroup

 Cgroup is forced empty (memory.force_empty)

 Task must interrogate cgroup state to determine action

Copyright 2009 Embedded Alley Solutions, Inc.

Out of Memory (OOM) Killer

 Linux chosen method of managing memory overload

 Often nothing to kill in an embedded system

 Difficult to make the right choice

 Operation is based upon kernel tuning

 Memory overcommit

 OOM adjustment knobs (per process)

 Policy choices always under discussion

 Memory cgroup is subject to OOM

 Overload will trigger OOM within cgroup

 Can leverage OOM cgroup (http://lwn.net/Articles/315949/)

Copyright 2009 Embedded Alley Solutions, Inc.

Future Direction

 Improve notification API

 Additional cgroup subsystems

 Increased granularity

 requires lower overhead

 asynchronous notification

 information arguments passed with notification

 Active resource management programming model

 Application states “..this is what I plan to need ...”

 At end of block the need is revoked

 Find some assist for legacy applications

Copyright 2009 Embedded Alley Solutions, Inc.

Summary

 All system resources are precious and must be managed

 Cgroups provide the mechanism for task partitioning

 A subsystem resource controller provides the policy

 Enables a powerful application-centric resource management

 Memory notification patch is in the e-mail queue to lkml

Copyright 2009 Embedded Alley Solutions, Inc.

