
Solutions for Intelligent Devices

Dan Malek

Chief Technology
Officer

6 April 2009

Memory
A Most Precious Resource

Copyright 2008 Embedded Alley Solutions, Inc.

Copyright 2009 Embedded Alley Solutions, Inc.

Introduction

 Why Memory?

 Capacity isn't time-based

 If you need more, someone has to free

 CPU too slow, it just takes longer
 What to do?

 Protect my stash

 Ask Linux OS for assistance

Copyright 2009 Embedded Alley Solutions, Inc.

How Do We Do It?

 Cgroups Overview

 Memory Cgroup

 Memory Usage Notification
 Memory Cgroup Example

 Out of Memory (OOM) Killer

 Future Directions

Copyright 2009 Embedded Alley Solutions, Inc.

Cgroups Overview

 Referenced by several terms

 Containers (or Container Group)

 Control, Controller Group

 We'll just say “cgroups”

 What are cgroups?

 How do they work?

 Why do I care?

Copyright 2009 Embedded Alley Solutions, Inc.

What Are Cgroups?

 A mechanism for partitioning sets of tasks

 Managed in a mounted virtual file system

 Can create a group hierarchy

 Multiple groups within a tree

 Root of tree is management point for sub-trees

 No system cost if not used, insignificant when used

g_1/

/cgroup

g_0/

Copyright 2009 Embedded Alley Solutions, Inc.

How Do Cgroups Work?

 A resource controller is the
policy

 Tracks the reference counted
objects

 cpu usage

 cpu sets

 memory pages

 Works with a kernel subsystem
for resource management

Memory Cgroup

cgroups Linux
VM

resource
counters

Copyright 2009 Embedded Alley Solutions, Inc.

Why Do I Care?

 Powerful system resource management concept

 Resource consumers become part of the management

 OS doesn't have to guess (sometimes poorly)

 Thread priorities are just hints

 VM tuning knobs can be a research career

 Tuning moves to the application space

 Ill-behaved tasks in their own container

 Easily accommodate feature enhancement

 Sensible system tuning perspective

Linux Cgroup Implementation

 Mounted virtual file system (i.e. /cgroups/<restype>)

 echo pid > /cgroups/<restype>/<userclass>/tasks

 Easily and dynamically change resource controls

 echo pid > /cgroups/<restype>/<new_class>/tasks

 Threads can determine cgroup information

 /proc/<pid>/cgroup

Copyright 2009 Embedded Alley Solutions, Inc.

Memory Cgroup

 Memory Resource Controller

 Don't confuse with hardware memory controller

 Track RSS and page cache pages, swap cache option

 Reclaims through cgroup LRU

 Isolates memory behavior to a group of tasks

 Prevent “memory hungry” tasks from consuming entire
system memory resource

 Control memory consumption for virtualization

 Provide a protected container for critical embedded tasks

Copyright 2009 Embedded Alley Solutions, Inc.

Memory Usage Notification

 Previous, stand-alone /dev/mem_notify

 New approach builds upon the memory cgroup resource
tracking

 Kernel configuration option (CGROUP_MEM_NOTIFY)

 Select a cgroup usage limit notification percentage

 Percentage rather than absolute value

 Prevents need to update if cgroup is resized

 Task operates normally until notification

 Can block-wait until limit

 Can poll as part of normal processing

Copyright 2009 Embedded Alley Solutions, Inc.

Memory Notification Cgroup Example

 Create a virtual file system

 Set resource limits

 Memory allocation code fragment

 Notification thread code fragment

 Example program message output

Copyright 2009 Embedded Alley Solutions, Inc.

Create Virtual File System

 mkdir -p /cgroups/memcg

 mount -t cgroup none /cgroups/memcg -o memory

 mkdir /cgroups/memcg/0

 echo $$ > /cgroups/memcg/0/tasks

Copyright 2009 Embedded Alley Solutions, Inc.

Set Resource Limits

Copyright 2009 Embedded Alley Solutions, Inc.

ls /cgroups/memcg/0
 memory.failcnt memory.notify_limit_usage
 memory.force_empty memory.stat
 memory.limit_in_bytes memory.usage_in_bytes
 memory.max_usage_in_bytes notify_on_release
 memory.notify_limit_lowait tasks
 memory.notify_limit_percent

 Set the memory usage limit

 echo 10M > /cgroups/memcg/0/memory.limit_in_bytes

 Set the notification limit to 80%

 echo 80 > /cgroups/memcg/0/memory.notify_limit_percent

Memory Resource Notification Example

 Multi-threaded application

 Main thread allocates 10 segments
 Main thread frees segments if they still exist
 Continues in a loop

 Notification thread

 Blocks on memory.notify_limit_lowait

 Frees allocated segments until usage < limit

Copyright 2009 Embedded Alley Solutions, Inc.

Memory Allocation Code Fragment

Copyright 2009 Embedded Alley Solutions, Inc.

 k = 10;
 while (k-- > 0) {
 for(i = 0; i<NSEGS; i++) {
 if ((mp = malloc(SEGSIZE)) == NULL) {
 perror("malloc");
 exit(2);
 }
 memptr[i] = mp;
 for (j = 0; j < SEGSIZE; j++)
 *mp++ = j;
 printf("Alloc seg %d\n", i);
 sleep(5);
 }
 for(i = 0; i<NSEGS; i++) {
 if ((mp = memptr[i]) != NULL)
 free(mp);
 printf("Free seg %d\n", i);
 sleep(5);
 }
 }

Notification Thread Code Fragment

Copyright 2009 Embedded Alley Solutions, Inc.

 for (;;) {
 /* Open/read /cgroups/memcg/0/memory.notify_limit_lowait
 * Blocks while usage is below limit
 */
 percent = get_memcg_val("lowait");
 limit = get_memcg_val("percent");
 printf("Notify wakeup percent %d, limit %d\n", percent, limit);
 i = 0;
 do {
 if ((mp = memptr[i]) != NULL) {
 memptr[i] = NULL;
 free(mp);
 printf("Notify free seg %d\n", i);
 }
 i++;
 usage = get_memcg_val("usage");
 } while ((usage > limit) && (i < NSEGS));
 }

Example Program Message Output

Copyright 2009 Embedded Alley Solutions, Inc.

 Alloc seg 0
 Alloc seg 1
 Alloc seg 2
 Alloc seg 3
 Alloc seg 4
 Alloc seg 5
 Notify wakeup percent 80, limit 80
 Notify free seg 0
 Alloc seg 6
 Notify wakeup percent 80, limit 80
 Notify free seg 1
 Alloc seg 7
 Notify wakeup percent 80, limit 80
 Notify free seg 2
 Alloc seg 8
 Notify wakeup percent 80, limit 80
 Notify free seg 3
 Alloc seg 9
 Free seg 0
 Free seg 1
 Free seg 2
 and continues

Memory Resource Controller Challenges

 Moving a task doesn't migrate old allocations

 Reclaims will deplete old cgroup allocation

 New allocation charge to new cgroup

 Notification doesn't carry information

 Normally, wake up is due to reaching notify limit

 Wake up on thread migrate to new cgroup

 Cgroup is forced empty (memory.force_empty)

 Task must interrogate cgroup state to determine action

Copyright 2009 Embedded Alley Solutions, Inc.

Out of Memory (OOM) Killer

 Linux chosen method of managing memory overload

 Often nothing to kill in an embedded system

 Difficult to make the right choice

 Operation is based upon kernel tuning

 Memory overcommit

 OOM adjustment knobs (per process)

 Policy choices always under discussion

 Memory cgroup is subject to OOM

 Overload will trigger OOM within cgroup

 Can leverage OOM cgroup (http://lwn.net/Articles/315949/)

Copyright 2009 Embedded Alley Solutions, Inc.

Future Direction

 Improve notification API

 Additional cgroup subsystems

 Increased granularity

 requires lower overhead

 asynchronous notification

 information arguments passed with notification

 Active resource management programming model

 Application states “..this is what I plan to need ...”

 At end of block the need is revoked

 Find some assist for legacy applications

Copyright 2009 Embedded Alley Solutions, Inc.

Summary

 All system resources are precious and must be managed

 Cgroups provide the mechanism for task partitioning

 A subsystem resource controller provides the policy

 Enables a powerful application-centric resource management

 Memory notification patch is in the e-mail queue to lkml

Copyright 2009 Embedded Alley Solutions, Inc.

