
Cryptography basics for embedded developers

Embedded Linux Conference, San Diego, 2016

"If you think cryptography is the solution to your problem,
then you don't understand your problem"

- Roger Needham

● Misuse of cryptography is common source of vulnerabilities
○ “41 of the 100 apps selected [...] were vulnerable [...] due to various forms of SSL misuse.” *

● Understanding crypto basics will improve the security of devices
○ Important for anyone using cryptography (e.g. libraries)

● Think about security requirements for your product
○ Can it be attacked? Why would it? How?
○ Consider how cryptography can be applied correctly to support your requirements

● Reduce the risk of your product being compromised

Cryptography basics are important

* Source: “Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security” CCS’2012

About me

● Eystein Stenberg
○ CS/Crypto master’s
○ 7 years in systems, security management
○ eystein@mender.io

● Mender.io
○ Over-the-air updater project for Linux/Yocto
○ Under active development
○ Open Source

● Reach me after on email or exhibitor hall

mailto:eystein@mender.io
mailto:eystein@mender.io

The mandatory legal note

● Some use of cryptography / software has legal implications

● Most notably: export restrictions in the USA

● I will only consider technological aspects, not legal ones

Session overview

● Our goals

● Crypto basics and pitfalls
○ Encryption
○ Signatures & Message Authentication Codes
○ Secure hashing
○ Key management

● Crypto for embedded
○ Expensive operations
○ Alternatives

Attacker motivation

● Why would someone attack your product?

● Can someone make money from a compromise? How much?

● All crime starts with a motive

Your goal is to lower attacker ROI

● It is always possible to compromise

● Lower Return on Investment (ROI) for attacker; either

○ Decrease value of successful attack

○ Increase cost of successful attack

● Focus on increasing cost of attack in this session

Decreasing value of attack can be effective too

CIA concepts implemented with crypto primitives

● Confidentiality
○ Is there something secret?
○ Primitives: encryption

● Integrity
○ Should we detect altering of information?
○ Primitives: secure hashing, signatures, MAC

● Authenticity
○ Do we need to know who create/request information?
○ Primitives: signatures, MAC

not encryption

Symmetric encryption: one shared secret key

Cleartext Encrypt Ciphertext Decrypt Cleartext

● Use for confidentiality
● Efficient, relatively low resource consumption
● Typical key & block sizes: 128, 192, 256 bit
● Difficult to keep shared things secret
● Note block cipher mode when encrypting large volumes of data with same key
● Example: AES (Advanced Encryption Standard) + CBC mode

Pitfall: Use insecure symmetric block cipher mode

Original Encrypted with ECB mode Encrypted with CBC mode

Source: Larry Ewing

Asymmetric encryption: public and private key

● Use for confidentiality of little data (e.g. symmetric key) with multiple parties
○ Very compute-intensive operation (~1000 x symmetric)
○ Large volume of ciphertext can leak information about private key

● Advantage over symmetric: safe to share public key with anyone
● Examples: RSA (key/block size ~4096 bits), Elliptic Curve (key/block size ~256 bits)

Cleartext Encrypt Ciphertext Decrypt Cleartext

Message Authentication Code (symmetric)

Message MAC alg. Message

MAC1

Generation:

Verification: Message MAC alg. MAC2
MAC1

MAC2
?=

● Use for authenticity
● Efficient, typical key & MAC sizes: 160, 256 bit
● Difficult to keep shared things secret
● If you need confidentiality too, look at Authenticated Encryption (AE/AEAD)
● Example: HMAC-SHA256

Send Message & MAC

Digital signature (asymmetric)

Message Secure
hash

Message
hash1Generation:

Verification: Message

● Use for authenticity
● Less efficient than MAC (~1000x), but no shared secret
● Common misconception: “signing is encrypting with private key”
● Examples: DSA (key/block size ~4096 bits), ECDSA (key/block size ~256 bits)

Sign

Signature

Send
Message &
Signature

Secure
hash hash2 Verify

Signature

Accept/Reject

Cryptographically secure hashing

Message hash

Messagehash

Message2

hash1Message1

hash2
=!=

Message1 mod hash1

Given hash, infeasible to generate a message
that yields the hash.

Infeasible to modify a message in such a way
that it generates the same hash.

Infeasible to find any two messages that yields
the same hash.

Hash is efficient to compute.

Hash function implementations

● Insecure if it does not meet all four criteria

● Secure hash algorithm (SHA) family
○ SHA-256, SHA-384, SHA-512 (number denotes bits of output)

● Insecure hash algorithms
○ MD5 (128 bits): Attack that can find two messages with same hash in seconds
○ SHA-1 (160 bits): Attack reduced collision to 63-bit operation (ideal is 160/2 = 80)

● Bottom line: use SHA-256 (or larger) if you use it for security

● All cryptography is based on keys
● If someone can make you use the wrong key, security is broken

○ Need secure {ID, key} mappings
● Secure key exchange requires a pre-existing secure channel (barring quantum crypto)

○ Typically inserted during provisioning (e.g. web-browsers, phone apps, ...)
● It is a notoriously hard problem, especially in many-to-many conversations (e.g. web)

The Key Exchange Problem: Using the right key

Alice Bob

Hello, I’m Alice,
please store my
Key A

The Evil
Network

Someone said they
are Alice on the

network, are they
telling the truth?

Alice,
Key A

Using the right key: Public Key Infrastructure (PKI)

● Most common way to “solve” the key exchange problem
● Delegate problem with absolute trust to one (or more) Certificate Authority (CA)

○ If CA says it’s the right binding by signing { ID, key }, we will trust him
● Still need to securely obtain CA’s key (pre-existing secure channel, e.g. provisioning)
● Introduces a single point of compromise for the entire system (CA’s private key)
● Complex to manage (keep the CA secure, rekeying CA, cert issue, cert revocation, …)

Alice Bob

Hello, I’m Alice,
please store my
Key A

The Evil
Network

My CA vouches for
this being Alice’s
key, so I accept.

Alice,
Key A,
CASign

CA’s key
Certificate

Secure
channel

● Avoid CA certificates, trust public keys directly (to varying degrees)
● Web of trust; OpenPGP (GPG/PGP)

○ Like a distributed CA
○ “I trust T & J, T & J trusts A, so I trust A”

● Might be a better fit for one-to-many (e.g. clients w/ single server)
○ Simpler, avoids the run-your-own-CA complexities
○ Limited use of certificates anyway here (sent just to client and server)

Using the right key: Trust-based

Alice Bob

Hello, I’m Alice,
please store my
Key A

The Evil
Network

Do I have Alice’s
key? Tom and John
trust it, so I accept.

Alice,
Key A

Tom, Key T
John, Key J

Key store

Secure
channel

Key management

● Some keys need to be exchanged

● All security breaks if secret keys are compromised

● The hardest part of implementing cryptography

● Some tips
○ Don’t share secret keys between many devices
○ Use asymmetric cryptography
○ Store secret keys on non-removable media with strict file permissions
○ Ensure that keys can be decommissioned / rotated
○ Consider hardware-assistance (only operations are available to software, not keys)

Implementing cryptography in embedded

● We need it to be efficient!
○ Cryptography is based on advanced mathematical operations

● Asymmetric cryptography is very expensive on CPU/memory
○ Order of 1000x of symmetric counterparts typically
○ Use it sparingly
○ Use Elliptic Curve Cryptography (ECC)

● Look for hardware support (crypto processor)

Use Elliptic Curve Cryptography over RSA/DSA

We are here:
3072 vs 256 bits

Source: NIST 800-57, Table 2

● Typically aim for 128-bit security
level or higher today (but it’s up to
you)

● RSA/DSA requires 12x the key
size at this level

● TLS with ECC is 3-10x faster (CPU
time) at this level*

* Source: Performance Analysis of Elliptic Curve
Cryptography for SSL, V. Gupta, S. Gupta, S. Chang

Cryptography basics that will improve your security

● Key management is hard
○ At least you are aware
○ Consider trust-based key exchange
○ Avoid putting a single secret all over the place

● Use industry standard libraries and high-level functions
○ Never ever ever implement your own cryptographic algorithms!

● Consider ECC over RSA for performance in asymmetric crypto

● Use SHA-256 (or higher) for secure hashing

Is there a secret backdoor?

