
Vitaly Wool, Konsulko Group

EAS – Energy Aware Scheduler
An unbiased look

Introduction
Energy Aware Scheduler
Qualcomm HMP scheduler
Comparisons and outcome
Way forward
Wrap-up

Completely Fair Scheduler

q The main idea is to maintain balance (fairness) in providing
processor time to tasks

q CFS maintains the amount of time provided to a given task to
determine if it needs balancing
§ the smaller amount of time a task has been permitted access to

the processor — the higher its need for the processor is

q CFS maintains a time-ordered red-black tree
§ Instead of run queues as did predecessors

§ Guarantees O(log(N))

CFS operation principles

q Sorts tasks in ascending order by CPU bandwidth received
§ This is where red-black tree comes into play

q The leftmost task off the rbtree is picked up next
§ It has the least spent execution time

§ So that task gets the CPU to restore balance (fairness)

q Considers all CPUs to be the same
§ Works very well in SMP systems

§ Does not work in more complicated cases

big.LITTLE

q big.LITTLE technology is a heterogeneous processor
architecture which uses two types of cores
§ ”LITTLE” cores are designed for maximum power efficiency

§ ”big” cores should provide maximal computing power

§ big.LITTLE CPU may have arbitrary number of big / little cores

q big.LITTLE operation
§ Each task may be scheduled for execution either on big or on

LITTLE core
§ Depending on task’s demand for computing power

§ The aim is for high peak performance with low mean power

big.LITTLE in a nutshell

q The key is task placement
§ Wrong task-core distribution kills big.LITTLE advantages

q big.LITTLE puts high requirements on scheduler
§ It should be aware of 2 types of cores

§ It should be energy aware

§ it should communicate with the DVFS subsystem

q big.LITTLE scheduling implies heuristics
§ The task placement decision should ideally be made basing on

the task’s future activity

Scheduler for big.LITTLE?

q CFS is a good scheduler
§ But it’s not really a perfect fit for big.LITTLE

q Extend CFS to be applicable to non-SMP architectures
§ Work started back in 2013

q 2 competing implementations were developed
§ Qualcomm/Codeaurora (HMP scheduler, QHMP)

§ Linaro/ARM (EAS)

q We’ll concentrate more on EAS

Introduction
Energy Aware Scheduler
Qualcomm HMP scheduler
Comparisons and outcome
Way forward
Wrap-up

EAS: basic principles

q Task scheduling that considers energy implications

q Decision should be made basing on:
§ System topology

§ E. g. SMP or HMP

§ Power management features

§ CPU Idle states, DVFS

§ Workload for each core

q Work load calculation is basically independent
§ Separate module providing results to EAS

PELT: Per-Entity Load Tracking

q In mainline already, merged in 3.8
§ used by mainline CFS

q The main idea is that process can contribute to load even if it
is not actually running at the moment

q PELT tracks load on a per-entity basis

q Let Li designate the entity's load contribution in period pi
§ Then the total load is ! = !# + !%& + !'&' + !(&(+ ⋯

§ q is the decay factor

EAS/PELT operation

q Estimate energy
§ ! = #$%&'($%&' +

#*+,-(*+,-
q Pick CPU with sufficient

spare capacity and
smallest energy impact
§ Here both LITTLE and

big #2 cores have
sufficient capacity

§ the energy impact is
smaller with the former

capacity

cores

LITTLE big

?

Scheduled
task

Current
capacity

1 2 1 2

Introduction
Energy Aware Scheduler
Qualcomm HMP scheduler
Comparisons and outcome
Way forward
Wrap-up

Qualcomm HMP scheduler

q Tasks are divided into groups
§ By importance

§ Depending on nice priority

§ By “size”
§ Depending on the calculated load
§ Task may be “big”, ”little” or other
§ Thresholds are parametrized

q Scheduling a task should depend on its properties

q Task “size” should be defined somehow
§ It’s done basing on task demand calculation

HMP scheduler: task demand

q Task demand Dtask is the contribution of a task's running time
to a window

§ !"#$% =
'()"#_"+,(×./0_10(2

345 _67$$+8)(_10(2

§ delta_time - time of task running on a core in a period of time
§ cur_freq - the current frequency of the core this task is running on
§ max_possible_freq is the maximum possible frequency across all

cores

q Calculated over N sliding windows (N is a parameter)
§ E. g. the average demand ⁄!#:; = (!= + ⋯+ !@) B

§ The best result is achieved with D = max{!#:;, !=}

Task demand scaling

q We already account for difference in maximum frequency
§ Dtask is calculated in regard to maximum frequency across all

cores

q We also need to account for higher performance of big cores

§ !"#$%,$'#()* = !"#$% , -.→)001'1)2'3
456 78$$19())001'1)2'3

§ Efficiency is a per-runqueue parameter

§ Usually big cores are considered 2x more effective

“big” and “small” tasks in HMP

q Small task
§ A periodic task with short execution time
§ Can be easily identified using task average demand

q Big task
§ Task producing high CPU load (parametrized, 90%+)
§ Some heavy tasks HMP doesn’t want to count as big

§ e.g. background threads in Android

q Some tasks are neither big nor small

q Tasks can change their “size” over time

HMP scheduler and DVFS

q HMP scheduler calculates loads anyway
§ It sort of has to, for QoS reasons

§ Take too long to wait for a load increase notification from governor

q CPUFreq governor either runs within a cluster or should be
aware of HMP architecture
§ So a truly “standalone” CPUFreq governor will end up

duplicating HMP functions

q As a result, HMP scheduler used to come with heavily
patched ‘performance’ governor
§ Which is itself out-of-tree

Introduction
Energy Aware Scheduler
Qualcomm HMP scheduler
Comparisons and outcome
Way forward
Wrap-up

Test: Youtube playback / power

EAS/PELT: 561 mA QHMP: 680 mA

Test: frame drops per sec.

0

1

2

3

4

5

6

7

Chrome scrolling Home screen scrolling Video recording Youtube playback HD Video playback

Chart Title

QHMP EAS/PELT

Result interpretation

q EAS works best with a
steady load
§ Excellent power

consumption results
§ Good QoS

q EAS doesn’t cope well with
bursts
§ QoS is lacking
§ Need for frequency boost

§ But then power increases
too

QHMP vs EAS/PELT side-by-side

q QHMP has a strong focus
on performance

q QHMP is complex and its
code is obfuscated

q QHMP is flexible but
basically not maintainable

q QHMP doesn’t stand a
chance of being mainlined

q EAS/PELT is more focused
on power conservation

q EAS is based on simple
enough principles

q EAS is more predictable
and maintainable

q EAS has a chance of being
merged into mainline

Introduction
Energy Aware Scheduler
Qualcomm HMP scheduler
Comparisons and outcome
Way forward
Wrap-up

EAS: way forward

q It still made sense to move forward with EAS
§ But turning a blind eye to its deficiencies wouldn’t be smart

§ Something had to be done with performance issues

q Use task demand calculation from QHMP for EAS
§ Modularize it and take off the QHMP

q WALT: Window Assisted Load Tracking
§ Retains PELT “per-entity” tracking pattern

§ Implements N-window demand calculation from QHMP

WALT: demand contribution
calculation

walt_update_task_ravg()

Previous window Current window

timedelta

add_to_task_ravg(rq, p, delta)New
window

?

p.ravg.sum += delta;

update_history(rq, p, p.ravg.sum)

yes

no

WALT: CPU utilization

q WALT estimates the utilization of CPU by considering the
sample measured during the last window.
§ prev_runnable_sum
§ So everything happening in the current window’s time frame is

not affecting the view of utilization

q WALT provides CPU utilization data to CPUFreq governor on
demand

q WALT notifies governor about inter-cluster migrations
§ CPUFreq operates on cluster
§ Governor recalculates frequencies for clusters

CPU load tracking: PELT vs WALT

EAS/PELT (util_avg)

EAS/WALT (prev_runnable_sum)

With strong
magnification

Result interpretation

q WALT ramps up and down
faster
§ Better accuracy for CPUFreq

§ Power consumption may be
a concern

q Less need for frequency
boosting
§ So in fact power

consumption doesn’t
increase compared to PELT

Introduction
Energy Aware Scheduler
Qualcomm HMP scheduler
Comparisons and outcome
Way forward
Wrap-up

PELT vs WALT summary

PELT WALT

Load tracking
Load is accounted using a
geometric series

Load is accounted with a
policy that observes past
N windows

Blocked
load/utilization

tracking

Load is decayed as part
of a runqueue statistic
when the task is blocked

Blocked load
contribution is removed
from runqueue
sum/average statistics.

Blocked load
restoration

Runqueue statistics
include blocked
load/utilization at all
times

Load contribution is
restored to RQ statistics
when the task becomes
runnable again.

EAS: current status

q WALT became the first choice for EAS

§ Better QoS

q EAS/WALT is effectively EAS + accounting from QHMP

q And that’s a mostly good thing

§ Convergence

§ Most of the good stuff from QHMP got into EAS/WALT

§ E.g. accounting (WALT) got in

§ But: the notion of “small” and “big” task was lost

EAS and task packing

q EAS won’t pack a task if that would mean raising CPU frequency
§ For a small task, keeping an extra CPU awake may cost more

q EAS will pack a task even if it would be considered “big”
§ A big task may have to be migrated soon

0

200

400

600

Initial
@300

Initial
@480

Initial
@600

Power consumption,
mA

Packing Spreading

capacity

cores

LITTLE big

?

Scheduled
task

Current
capacity

1 2 1 2

Conclusions

q big.LITTLE architecture puts high demands on the system
software
§ Scheduler has to account for multiple metrics

§ Capacity, power impact

§ DVFS becomes tightly couples with scheduler

q EAS is the most used scheduler for big.LITTLE as of now

q What would the unbiased view on EAS be?
§ it is the best we’ve got for big.LITTLE scheduling

§ it still has significant shortcomings

Credits

q Uladzislau “Vlad” Rezki <urezki@gmail.com>
§ Help with EAS/QHMP internals

q Anton Ugarov <anton.ugarov@cicknet.pro>
§ Help with testing / measurements

q Tatyana Nekludova
§ Pictures and inspiration

q Maria Wool
§ Inspiration and patience

mailto:urezki@gmail.com
mailto:anton.ugarov@cicknet.pro

Questions?
Vitaly.Wool@konsulko.com

