’ B
[Ty -

“7.1'

Automated
Testing Summit

2018

Tim Bird
Fuego Test System Maintainer
Sr. Staff Software Engineer, Sony Electronics

))) Outline
Fuego

Introduction

1)
Fuego

® This will likely be a frustrating day

®* Everyone has ideas about testing that they’'ve been thinking
about for years

®* We can't possibly cover them all in one day

* With 20+ tests and frameworks present, we can’t review the
details of each one

Our apologies in advance...

)
Fuego

® Approach a common understanding of the problem space

® Discuss an overarching framework for describing how our
different systems work

Develop common terminology

_earn how other systems solve problems

_earn a bit about problems our own systems don’t solve
Create a path for the future

Goals for today

)
Fuego

® Two things recently that made me think about the value of
collaboration:

°* Ribbon
* “Alone”

Introduction

))) Ribbon
Fuego

® | got a ribbon from my sister on the present for my birthday

EaE)

X
SN
) LR,
TR

by

e

610/23/2014 PA1

)
Fuego

®* Ribbon was inexpensive
* | almost threw it away

® Ribbon is also a marvel of modern technology
* dyes of many colors, refined metal, textile, fabrication, distribution

* Thousands of humans involved in thousands of operations, to
bring me a ribbon for less than $1

®* Low cost only possible due to high degree of specialization,
collaboration and exchange.

® | kept it to remind me of the value of this

Ribbon thoughts

) “Alone” TV show
Fuego

® 10 people are placed in wilderness, with clothes and only 10
modern items — completely alone

® Person who can survive the longest wins
® Longest survival time is 87 days

)

Fuego

“Alone” lessons

The same lesson as the ribbon, but from the opposite
direction

* With no specialization, collaboration or exchange of goods or
services — a person can't survive

* People literally reduced to eating bark
Very difficult to make your own tools sufficient to survive

)ll Outline

Fuego

Vision

$)

.) Vision — super high level
Fuego

Do for testing
what open source
has done for coding

® Significant parts of the test process are
unshared, ad hoc, private, etc.

* However, most QA doesn’t need to be proprietary
® There are open source frameworks and test

programs but more is needed to create an
open testing community

* Goal:

* | Promote the sharing of automated Cl components,
artifacts, and results, the way code is shared now

* Allow components to specialize, and support
collaboration between projects

92\
Fuego
® Finish standards for APls or protocols between systems

* That’s too ambitious, but we can get conversations started today.
® Learn about neat feature of other systems, and start
implementing them ourselves

* That's the wrong approach

* |nstead we should:

* |dentify unique value in our systems, and try to modularize it for re-use by
others

* |dentify value in other systems, and start thinking about how to use it in
our systems

Non-goals for today

1210/23/2014 PA1

)

. More concretely...
Fuego
® | don’'t want to add to Fuego:
* Email-based patch CI triggers
* SUT deployment abstractions (provisioning)
°* DUT control drivers
* Centralized results repositories
* Distributed results visualization
® | want to focus on areas where Fuego is
different:
* Repository of test definitions

* Sharing of pass criteria and testcase
documentation

* Generalized output parsing system

N, Outline
Fuego

Problem Statements

92\
Fuego
® Why are we here?
* Many aspects of QA are not shared
* Nobody can do it all themselves
® Tests are viewed as “secret sauce” and are kept proprietary

* Exactly the same as embedded system software 20 years ago

® Samsung, LG, Sony all produce TV sets
* Which of these use test software from another vendor?
* Which of these share their TV functionality tests?

Problem statements

)
Fuego

® No place to share a new test
° |s that true? What about LTP or kselftest?

* There are open source tests (cyclictest, syzkaller, iozone, Imbench,
etc.)

® Often involves lab-specific code
* e.g. interface to hardware that is unique or rare

® [s often customized to a particular hardware or software
configuration on the target

® Test definition is heavily dependent on test framework
* file format, APls, architecture

Why are tests not shared?

%)\
Fuego
®* The paradox of generalization and specialization

* Tests are too specialized to their framework, or their lab, or
hardware characteristics, etc.

® Solution is to create more generalized testcases, and allow
per-use customizations

* Ability to customize test (skip lists, customizable expected values,
variants)

* Localized results interpretation (pass criteria)
® Preferably do automatic customization
®* e.g. Benchmark value threshold based on previous results

Specialization of tests

)
Fuego

® Different frameworks factor their data and services quite
dlfferently
Where operations are performed:
* 1) central server, 2) on a local host, or 3) on-DUT
* Party responsible for performing operation:

* 1) by the test itself, 2) by the framework, 3) by an external service, or 4)
by the end user (tester)

* When are operations performed:

* 1) during the test, 2) during post-processing, 3) synchronously, 4)
asynchronously, etc.

* Parts of the test definition are in different files, to support per-test,
per-board, or per-lab customizations

Factorization

$))
Fuego

®* Test features look the same at different levels of abstraction

®* Example:
* Individual testcase has assertions about expectected values
* actual value different from expected = failure

* Test suite has aggregation of expected results, with expected
results

* Test plan has aggregation of test results from many test suites,
with expected results

® Can do pass criteria, results analysis, reporting at all levels

® But often the features are expressed completely differently at
different levels

Fractal nature of testing

N) Outline
Fuego

Discussion Areas

1)
Fuego

® Terminology and stack parts
* Review of glossary
* Review of diagram

®* Different areas of the stack

* Test Definition, Build Artifacts, Test Execution API (E)
* Run Artifacts, results format, parsing, Results gathering API (K)

* Farm standards, DUT control drivers, board definitions
* APIS F, G (maybe something new?)

Discussion areas

N, Getting started
Fuego

® Using common terminology
* Review of glossary
* Review of diagram

) Review of glossary
Fuego

® Questions:
* Is anything unclear?
* Review of terms
* Is anything missing?
* Review of candidate terms

$)),

Fuego

2410/23/2014

Bisection

Boot

Build artifact
Build manager
Dependency
Deploy

Device under Test (DUT)
DUT controller
DUT scheduler
Lab

Log

Log Parsing
Monitor

PA1

Glossary

Notification

Pass criteria Provision (verb)
Report generation
Request (noun)

Result

Results query

Run (noun)

Run artifact

Serial console

Software under test (SUT)
Test agent

Test definition

Test program

Test scheduler
Test software
Transport (noun)
Trigger (noun)
Variant
Visualization

)

Candidate terms

Fuego

2510/23/2014

Actual Value - the value that was seen for an operation performed by a test
Expected value - the value that was expected for an operation performed by a test
Feature - an attribute of a DUT or SUT or test environment that can be used to match tests. (used by labgrid)

Device type - The name of a set of DUTs that have identical or similar features, such that any one of them can be
used to run a test (used by LAVA)

° ** Tim's comment: Some examples would be good. Is there a term for the set of boards that have a particular type? (e.g. something that refers to
the pool of boards, rather than the characteristics of the set? Maybe DUT pool?)

PDU - Power Distribution Unit - a piece of hardware used to control power to one or more DUTs (used by LAVA)

Interactive DUT access - the ability to take a board out of automated testing service, for use in interactive testing
or debugging sessions (or for some other reason.

° Alternates: "DUT-offlining"? "DUT reservation"?)
DUT Supervisor - provides connection to the DUT and abstraction for DUT management actions (used by SLAV)
Test Profile - same thing as Test Definition. (used by Phoronix Test Suite)

PA1

) Some terms in detail
Fuego

Expected value
Variant

Test plan

Test definition
Pass criteria
Dependency

$2)\
Fuego

Value that is expected result for an operation.
Many tests have this hardcoded
However, it's nice if this is customizable

Some tests allow taking a snapshot, and using that as a
baseline

* This makes it possible to customize the expected value, possibly in
an automated way.

®* Example:

* test script that checks for a hardcoded list of services that are

supposed to be running after boot vs. test script that checks for a
user-provided list of services

Expected Value

$))
Fuego

® If a test has configurable expected value, then it is more
general, and can be customized by the user for different test
scenarios

Expected value (cont.)

92,

Fuego

® Is something about the environment or command line that
can be controlled at test run time

®* Example:

* Dhrystones number of loops
* |s a command line option that controls test duration
* If not set correctly, Dhrystone fails on some boards
* if not default, must be specified per board

®* Many command-line options for tests fall in this category
* They exist to customize the test for particular scenarios

Variant

2910/23/2014 PA1

$)),

Fuego

Variant (cont.)

Variant are hard to configure without domain-specific
knowledge

Would be good to share the most common ones (ie the most
useful command line combinations)

Is a way to customize a generic test

Need to be able to customize by board, or by file system, or
by network

* Variants can’t only be defined per-test

* Example: cyclictest arguments should be customized for your RT
requirements

$)\
Fuego

® Describes the requirements (pass counts, fail counts, fail-ok-
lists, benchmark value thresholds) that determine the final
test result

* Used for automated test interpretation
* This determines the ultimate ‘red or green’ result

®* Must also be able to customize per board, or per filesystem,
or per- some other attribute

® Example: LTP
° raspberry pi has 28 failures
* beagleone black has 67 failures, 2 hangs, and 1 kernel panic
* List of expected failures, or results that are ignored for now

Pass criteria

1)
Fuego

® All the data and instructions associated with a test
® source code, repositories, build instructions
° dependencies
* license, author, version, and other meta-data
* expected execution time (for timeouts)
* actual instructions to run on DUT
®* monitors and snapshots
® results parser
® pass criteria
* visualization configuration (tables vs. graphs)

Test definition

’)) Test definition (cont.)
Fuego

® Is used by lots of parts of the system
® Is very different in different frameworks

1)
Fuego

® A pre-requisite that must be filled in order for a test to run

* Lots of different kinds:
* compatible OSes/Distros
required file, program, package, library
required feature
required permissions (eg root)
* required memory, kconfig, processors

® Action may be to exclude test, cause installation, or change
status (sudo)

Dependency

3410/23/2014 PA1

N)
Fuego

® Questions:
* Anything unclear?
* Anything else needed?

* Does anyone's system do something completely outside the diagram?
« e.g. where is Oday's maillist scanner (used as a CI trigger)?
* Are the divisions in the diagram workable

* people have lots of ways they factor this stuff — (where they put
functionality, etc.)

« Despite differences, is the diagram useful to communicate with each other?

Review of diagram

3510/23/2014 PA1

Review =3 Build ——————————D e |0y

Build | Test Management
- build kernel, DTB, ramdisk
B . |- build distro images E ;-
c— - build test software 3
Test Definitions kD
- test source
Code Review - dependencies
(github, gerrit, etc) - run instructions
Q.
O = g
— A Build Artifacts
@ - Build logs
> - kernel, ramdisk, rootfs
Q - distro images
ﬂ Test images
Source Code | |
Repos
N Run Artifacts
- Boot logs
- Test logs
- Monitor logs
M.— . - Test artifacts
o
b~ Backend
o Frontend R - Results Database, F
Q. (Web UI) P » - Report Generation, < L
Q - Notifications
o /-Q-"'_'—" - Analytics
CLI tools

Lab / Board Farm

Test Scheduler
- scheduling

- resource allocation
- dependency checking

F 3
E

DUT Control

<

Control Host

Console | ‘F‘DWEI’

Devices Under
Test

Network | ‘L{:gging

!

(Power Measurement,

@"\. External Equipment
J

Analyzers)

Interact ¢ Analyze

Results

(MH)

d

N)
Fuego

® Boxes = processes or services
® Cylinders = repositories (persistent storage)
® Lines = APlIs

Diagram key

® Lots of systems have implicit APIs or hardcoded values
®* e.g.save araw file to local filesystem

T

Diagram elements — APIS 1

Fuego

APIS

* A = source repository access API

B = ClI trigger API

C = test definition (access) API

D = build artifact repository API

E = test execution API

F = board access API (DUT controller API?)
G = DUT control

H = hardware API

J = test equipment API

N)

Diagram elements — APIS 2

Fuego
APIS

K = results retrieval and storage API
L = backend notification API

M = run artifact repository access API
P = results query API

Q = results query APl (command line)

$))

Fuego

Diagram elements — processes or servers

‘est Manager

"est Scheduler

"est Runner (not shown)
DUT controller

DUT supervisor (not shown)
Results data server
-ramework web Ul

) Diagram elements — repositories
Fuego

® Test Definition repository (TD)
® Build Artifact repository (BA)
® Run Artifact repository (RA)

1)
Fuego

® How to use each other’s code?
* harmonize object definitions
* test definition, run request definition
* support APIs

®* modularize pieces

°* e.g. You don’t want to download and install all of Fuego just to get the
parser code.

®* How to use each other’'s data

* Dbuild artifacts, run artifacts
* bundle definitions
* standardized field names

* shared servers

How to share

4210/23/2014 PA1

) Specific Discussion Areas
Fuego

¢ Before Lunch:
* Test Definition (TD)
* Build Artifacts (BA)
* Test Execution API (E)

T
Fuego

Storage format(s)
Repository Access API
Elements

Issues:

* What fields do people have? Why?

* Could we somehow interoperate?
* Allow one system to run tests from another?

* Do the execution models prohibit this?
« Can this be fixed?

Test Definitions

1)
Fuego

® opentest stuff
® sw assets/ build description
° name, type,
* kernel reference URL: http://..

* could be a reference to yocto
* (called build execution engines)

® Testcase definition
* test execution engine (lava, batf, fuego, etc.)
* TEE logic: script: path to test script
* test params: (variant)
* hardware requirements (dependency)

Notes

)
Fuego
® Kinds

°* memory, packages, root, hardware, kernel config, files, features,
permissions)

®* Expression and management
® Actions
* exclude test, install item, change status

® Side note: Phoronix seems to have come up with a system
to express package dependencies that spans even multiple
OSes (Linux, BSD, Windows) - that's impressive.

* Any way to leverage without adopting all of Phoronix?

Dependencies (TD element)

$))
Fuego

® Storage format
®* Repository Access API
®* Elements

® |ssues:
* What meta-data is stored?

* Can artifacts be shared?
* What are the bundle formats? (PTS?, Fuego?, Lava?, Oday?)

Build artifacts

s)) Test Execution API (E)
Fuego

Elements
AP| method
Endpoints

Issues:

* Synchronous or Asynchronous?
* What fields and why?
* Is there a ‘run request’ object? Is it persistent?

N

Fuego

Lunch: 12:30 — 2:00

Located...?

N) (CELP Brainstorming session)
Fuego

® For those interested
® Held during lunch (1:00-2:00)

* Grab lunch from buffet, and come back to room for discussion

® Discuss current status of Embedded Linux
* Any projects or features that need LF funding?

T
Fuego

® Storage format
®* Repository Access API
®* Elements

® Issues:
* What fields and why?
* Can results artifacts be shared?
* What are the bundle formats? (kernelci? LAVA?)
* What logs, monitor results
* unified results format

Run artifacts

$2)

Fuego

® a) results parsing (RA, API 'K')
® D) unified results format (RA)
* tguids (testcase globally unique identifier)

® naming, using the same name space for the same test (e.g. LTP)
* e.g. (test suite, test set, testcase, measure)

°* common meta-data names, types, units (duration, start time,
trigger types, etc.)

®* common results names

°* common results format (json, xml, etc.) (or interchangeability
between formats)

Run artifact creation

$))
Fuego

® ¢) common results names (RA, backend)
* try to align on common meanings for results values?
* What are different ones? XFAIL

specific standards (cont.)

T
Fuego

® f) pass criteria (test runner?, RA, backend?)
* comparison of what people are doing now, and why?
* when applied?
* where does it live?
* see next slide
* fields, how expressed, how used and edited
* relationship to visualization

Results analysis

$)\
Fuego

® Describes the requirements (pass counts, fail counts, fail-ok-
lists, benchmark value thresholds) that determine the final
test result

* Used for automated test interpretation
* This determines the ultimate ‘red or green’ result

®* Must also be able to customize per board, or per filesystem,
or per- some other attribute

® Example: LTP
° raspberry pi has 28 failures
* beagleone black has 67 failures, 2 hangs, and 1 kernel panic
* List of expected failures, or results that are ignored for now

Pass criteria

)
Fuego

® h) results colors (frontend)

® i) chart configuration
* How does user customize visualization? s it persistent?

visualization

$2)\
Fuego

Required operations for board management (APl G)

_n)tegrating lab/DUT management with the test system (API
®* DUT controller drivers

* What drivers are needed: power, network, USB, button, relays,
serial, bus control, logging?

* Can the driver interfaces be standardized? (what language?)

* This is an API (not displayed) on the Control Host, to the boxes
inside it in the diagram.

* How to share? (whatrepo? Who manages?)

® Board definitions? Lab definitions?
* what fields and why? (format?)

Board farm standards

1)
Fuego

®* What API style for API F?

* cli?, network?, USB? (I've seen all these)
* discoverability

®* Hardware standards for DUT management

* Best practices for DUT makers
* don't require a button press to boot

* support update mechanism aside from manually rewriting the SDcard

* buttons needed for automation should have pins
etc.

* hardware interfaces that are nice to have on board (and are physically
accessible)

Board farm standards (cont.)

5810/23/2014 PA1

) Board farm standards (cont2.)
Fuego

® Required operations for test equipment? (API J)
* example: monitor power during run
* synchronous or asynchronous?

)

Fuego

® Results aggregation (RA, backend)
° candidates: kernelci, LKFT?

® Build services - (BA, build/test management)
* candidates: kernelci, kerneltests

® Test repositories (TD, BA)
° candidates: phoronix, Fuego, LAVA?, YP?

® Visualization (backend, frontend)
° candidates: kernelci, squad

Shared hosted services

) Wrap-up
Fuego
® How to work together

® Incentives
® Resources

$)\
Fuego

® Going from monolithic systems to modular, interworking
systems?
* How to do it given the wide disparity in systems?

* How do the different systems integrate, communicate
requirements, etc.

* Systems have different languages
* Systems have different division of labor (!!)

* Systems have different execution models
* e.g. Fuego = test-runner based; PTS & LTP = DUT-based

How to collaborate

$))\
Fuego
® Who will do it?

®* Where can we standardize?

®* Who benefits?
* Finding or enumerating incentives to avoid fragmentation

Setting standards

$)\
Fuego

®* Next event?

®* New mailing list?

® Is anyone willing to take work assignments?

* le write standards documents, organize meetings, implement
shims, perform compatibility tests, etc.

Process going forward

92,
Fuego
® Nobody wants to commoditize their own layer

®* People still need to perform their own testing

* Which means they need all parts of their current monolithic ClI
framework, while they modularize parts for re-use by other systems

® It's hard to maintain software you're not using

* e.g. DUT control driver for hardware not in your lab, or tests that
you don’t use

Incentives

)\
Fuego
® This is where it might be good to mention the Kernelci

project
* Is centralized funding needed? good?

Funding the unpleasant work

67 10/23/2014 PA1

1)
Fuego

® what tests need to be supported?
* boot-time
° run-time
* package-based (package unit tests)

* driver (hardware specific?)

® requiring specialized hardware external to board (e.g. canbus simulator,
hdmi frame-grabber)

°* multinode

* how to allocate/schedule multiple pieces of equipment for a test (e.g. 2 or
more nodes for a network test)

ldeas

68 10/23/2014 PA1

N)
Fuego

® results reporting
* centralized server and API to it (kernelCl json?)

® how to define standards
* de-facto only? (dominant project? (cough, LAVA))
* documents?

®* What to do with survey results?
* still need to add additional clarification responses

Ideas (cont2)

