
1

Linux Support for
ARM LPAE

Catalin Marinas

ELC Europe 2011

2

Agenda
§  Introduction
§ Classic ARM MMU
§ Classic ARM MMU Limitations
§ ARM LPAE Features
§ ARM LPAE and Virtualisation
§ Linux and ARM LPAE
§ Current Status and Future Developments

3

Introduction
§ Early ARM systems required only a few MBs of RAM
§ More and more complex smart-phones requiring 100s MB or

even GBs of RAM
§  32-bit physical addresses impose a 4GB hard limit

§  It’s not all about RAM
§  Peripherals
§  Flash memory
§  System ROM

§  (Mobile) virtualisation requires even more RAM
§  But not necessarily at the Guest OS level

§ ARM LPAE support for Linux developed within ARM Ltd.
§  First patches posted on LKML – October 2010

4

Classic ARM MMU
§ 32-bit physical address space
§ 2-level translation tables

§  Pointed to by TTBR0 (user mappings) and TTBR1 (kernel mappings
but with restrictions to the user/kernel memory split)

§  32-bit page table entries

§ 1st level contains 4096 entries (4 pages for PGD)
§  1MB section per entry or
§  Pointer to a 2nd level table
§  Implementation-defined 16MB supersections

§ 2nd level contains 256 entries pointing to 4KB page each
§  1KB per 2nd level page table

§ ARMv6/v7 introduced TEX remapping
§  Memory type becomes a 3-bit index

5

Classic ARM MMU (cont’d)
§ Other features

§  XN (eXecute Never) bit
§  Different memory types: Normal (cacheable and non-cacheable),

Device, Strongly Ordered
§  Shareability attributes for SMP systems

§ ASID-tagged TLB (ARMv6 onwards)
§  Avoids TLB flushing at context switch
§  8-bit ASID value assigned to an mm_struct

§  Dynamically allocated (there can be more than 256 processes)

6

Classic ARM MMU Limitations
§ Only 32-bit physical address space

§  Growing market requiring more than 4GB physical address space
(both RAM and peripherals)

§  Supersections can be used to allow up to 40-bit addresses using
16MB sections (implementation-defined feature)

§ Prior to ARMv6, not a direct link between access permissions
and Linux PTE bits
§  Simplified permission model introduced with ARMv6 but not used by

Linux

§ 2nd level page table does not fill a full 4K page
§ ARM Linux workarounds

§  Separate array for the Linux PTE bits
§  1st level entry consists of two 32-bit locations pointing to 2KB 2nd level

page table entries

7

Classic ARM MMU Limitations (cont’d)

1MB block
1MB block

1st level table
VA[31:20]

Table ptr
Table ptr

TTBR0

4KB

HW PTE

2nd level table
VA[19:12]

HW PTE

1KB

Linux PTE
2KB

Linux PTE

1KB
4KB

32-bit entry
32-bit entry

PGD/PMD PTE

PGD
entry

8

ARM LPAE Features
§ 40-bit physical addresses (1TB)
§ 40-bit intermediate physical addresses (guest physical space)
§ 3-level translation tables

§  Pointed to by TTBR0 (user mappings) and TTBR1 (kernel mappings)
§  Not as restrictive on user/kernel memory split (can use 3:1)
§ With 1GB kernel mapping, the 1st level is skipped

§  64-bit entries in each level

§ 1st level contains 4 entries (stage 1 translation)
§  1GB section or
§  Pointer to 2nd level table

§ 2nd level contains 512 entries (4KB in total)
§  2MB section or
§  Pointer to 3rd level

9

ARM LPAE Features (cont’d)
§ 3rd level contains 512 entries (4KB)

§  Each addressing a 4KB range
§  Possibility to set a contiguity flag for 16 consecutive pages

§ LDRD/STRD (64-bit load/store) instructions are atomic on
ARM processors supporting LPAE

§ Only the simplified page permission model is supported
§  No kernel RW and user RO combination

§ Domains are no longer present (they have already been
removed in ARMv7 Linux)

§ Additional spare bits to be used by the OS
§ Dedicated bits for user, read-only and access flag (young)

settings

10

ARM LPAE Features (cont’d)
§ ASID is part of the TTBR0 register

§  Simpler context switching code (no need to deal with speculative TLB
fetching with the wrong ASID)

§  The Context ID register can be used solely for debug/trace

§ Additional permission control
§  PXN – Privileged eXecute Never
§  SCTLR.WXN, SCTLR.UWXN – prevent execution from writable

locations (the latter only for user accesses)
§  APTable – restrict permissions in subsequent page table levels
§  XNTable, PXNTable – override XN and PXN bits in subsequent page

table levels

§ New registers for the memory region attributes
§  MAIR0, MAIR1 – 32-bit Memory Attribute Indirection Registers
§  8 memory types can be configured at a time

11

ARM LPAE Features (cont’d)

1GB block

Table ptr

1st level table
VA[31:30] TTBRx

4KB

2MB block

Table ptr

2nd level table
VA[29:21]

4KB

PTE

PTE

3rd level table
VA[20:12]

4KB

64-bit entry 64-bit entry 64-bit entry

PGD PMD PTE

12

ARM LPAE and Virtualisation
§ Guest OS running at the same privilege as on earlier

processors
§ New higher privileged Hypervisor mode

§  Controls a wide range of OS accesses to the hardware: memory,
timers, interrupt controller

§ The same page table format can be used as stage 2
translations
§  Converts intermediate physical address (IPA) to the physical address

§ Guest memory attributes can be overridden by the Hypervisor
§ Stage 2 translation requires setup in the Hypervisor mode

13

ARM LPAE and Virtualisation (cont’d)

User Mode
(Non-privileged)

Supervisor Mode
(Privileged)

Hyp Mode
(More Privileged)

Guest Operating System1

App2 App1

Guest Operating System2

App2 App1

Virtual Machine Monitor (VMM) or
Hypervisor

TrustZone Secure Monitor

Secure
Apps

Secure
Operating System

Non-secure State Secure State

E
xc

ep
tio

ns

E
xc

ep
tio

n
R

et
ur

ns

14

ARM LPAE and Virtualisation (cont’d)
Stage 1 translation owned by

each Guest OS

Virtual address map of
each App on each Guest OS

“Intermediate Physical” address
map of each Guest OS

Real System Physical
address map

Stage 2 translation owned
by the VMM

Hardware has 2-stage memory
translation

Tables from Guest OS translate
VA to IPA

Second set of tables from VMM
translate IPA to PA

Allows aborts to be routed to
appropriate software layer

15

Linux and ARM LPAE
§ Linux + ARM LPAE has the same memory layout as the

classic MMU implementation
§  Described in Documentation/arm/memory.txt
§  0..TASK_SIZE – user space
§  PAGE_OFFSET-16M..PAGE_OFFSET-2M – module space
§  PAGE_OFFSET-2M..PAGE_OFFSET – highmem mappings

§ Highmem is already supported by the classic MMU
§  Memory beyond 4G is only accessible via highmem
§  Page mapping functions use pfn (32-bit variable, PAGE_SHIFT == 12,

maximum 44-bit physical addresses)

§ Original ARM kernel port assumed 32-bit physical addresses
§  LPAE redefines phys_addr_t, dma_addr_t as u64 (generic typedefs)

§  New ATAG_MEM64 defined for specifying the 64-bit memory layout

16

Linux and ARM LPAE (cont’d)
§ Hard-coded assumptions about 2 levels of page tables

§  PGDIR_(SHIFT|SIZE|MASK) references converted to PMD_*

§  swapper_pg_dir extended to cover both 1st and 2nd levels of
page tables
§  1 page for PGD (only 4 entries used for stage 1 translations)
§  4 pages for PMD
§  init_mm.pgd points to swapper_pg_dir

§ TTBR0 used for user mappings and always points to PGD
§ TTBR1 used for kernel mapping:

§  3:1 split – TTBR1 points to 4th page of PMD (2 levels only, 1GB)
§  Classic MMU does not allow the use of TTBR1 for the 3:1 split

§  2:2 split – TTBR1 points to 3rd PGD entry
§  1:3 split – TTBR1 points to 1st PGD entry

17

Linux and ARM LPAE (cont’d)
§ The page table definitions have been separated into

pgtable*-2level.h and pgtable*-3level.h files
§  Few PTE bits shared between classic and LPAE definitions
§  Negated definitions of L_PTE_EXEC and L_PTE_WRITE to match the

corresponding hardware bits
§  Memory types are the same and they represent an index in the TEX

remapping registers (PRRR/NMRR or MAIR0/MAIR1)

§ The proc-v7.S file has been duplicated into proc-v7lpae.S
§  Different register setup for TTBRx and TEX remapping (MAIRx)
§  Simpler cpu_v7_set_pte_ext (1:1 mapping between hardware and

software PTE bits)

§  Simpler cpu_v7_switch_mm (ASID switched with TTBR0)

§ Current ARM code converted to pgtable-nopud.h
§  Not using ‘nopmd’ with classic MMU

18

Linux and ARM LPAE (cont’d)
§ Lowmem is mapped using 2MB sections in the 2nd level table

§  PGD and PMD only allocated from lowmem
§  PTE tables can be allocated from highmem

§ Exception handling
§  Different IFSR/DFSR registers structure and exception numbering –

arch/arm/mm/fault.c modified accordingly
§  Error reporting includes PMD information as well

§ PGD allocation/freeing
§  Kernel PGD entries copied to the new PGD during pgd_alloc()

§  Modules and pkmap entries added to the PMD during fault handling

§  Identity mapping (PA == VA)
§  Required for enabling or disabling the MMU – secondary CPU

booting, CPU hotplug, power management, kexec

19

Linux and ARM LPAE (cont’d)
§  Uses pgd_alloc() and pgd_free()

§  When PHYS_OFFSET > PAGE_OFFSET, kernel PGD entries may be
overridden

§  swapper_pg_dir entries marked with an additional bit –
L_PGD_SWAPPER

§  pgd_free() skips such entries during clean-up

20

Current Status and Future
§  Initial development done on software models

§  Tested on real hardware (FPGA and silicon)

§ Parts of the LPAE patch set already in mainline
§  Mainly preparatory patches, not core functionality
§  Aiming for full support in Linux 3.3

§ Hardware supporting LPAE
§  ARM Cortex-A15, Cortex-A7 processors
§  TI OMAP5 (dual-core ARM Cortex-A15)

§ Other developments
§  KVM support for Cortex-A15 – implemented by Christoffer Dall at

Columbia University
§  Uses the Virtualisation extensions together with the LPAE stage 2

translations

21

Reference
§ ARM Architecture Reference Manual rev C

§  Currently beta, not publicly available yet

§ Specifications publicly available on ARM Infocenter
§  http://infocenter.arm.com/
§  ARM architecture -> Reference Manuals -> ARMv7-AR LPA

Virtualisation Extensions

§ Linux patches – ARM architecture development tree
§  Hosts the latest ARM architecture developments before patches are

merged into the mainline kernel
§  git://github.com/cmarinas/linux.git
§  When the kernel.org accounts are back

§  git://git.kernel.org/pub/scm/linux/cmarinas/linux-arm-arch.git

22

Questions

