
Slide 1 - http://www.pengutronix.de - 15.10.2009

Customizing Embedded Linux Systems
with PTXdist

Robert Schwebel <r.schwebel@pengutronix.de>

Slide 2 - http://www.pengutronix.de - 15.10.2009

Agenda

● About Pengutronix - Why do we do that?

● Design Criteria for PTXdist

● How to build an embedded Linux system?

● What do Packages Do?

● Workspace Concept

● Building Cross GCCs: OSELAS.Toolchain()

● Other cool features

Slide 3 - http://www.pengutronix.de - 15.10.2009

Pengutronix

● Consulting, Support, Development Services for Embedded Linux

Automation & Machine Industry

Medical Devices

Automotive

Communication Industry

Energy & Oil Field Automation

Slide 4 - http://www.pengutronix.de - 15.10.2009

Some typical Embedded Linux systems ...

● CE and non CE projects

● The problems are the same ...

Slide 5 - http://www.pengutronix.de - 15.10.2009

Linux & OSS are good, because ...

● ... we have control over the sources

● ... bugs can be fixed

● ... quick adaption of new features

● ... systems can be customized exactly to our needs

Slide 6 - http://www.pengutronix.de - 15.10.2009

Some questions

● Do we have control over the sources?

● Can we manage a patch collection against upstream?
(mainlining helps, of course)

● Can „hacks“ be maintained for a long time?

● Can we recompile the system:
ARM OABI vs. EABI, softfloat vs. hardfloat VFP,
with and without debug, debug in glibc ...?

● Most standard distributions have no mechanism
for these requirements!

Slide 7 - http://www.pengutronix.de - 15.10.2009

Some questions

● Can bugs really be fixed?

● Can we fix bugs now?

● Can everything be cross compiled?

● Care of endianess Issues?

● Can we change configuration? (i.e. quickboot kernel .config)

● Do we immediately get new software versions once we have
mainlined our patches?

Slide 8 - http://www.pengutronix.de - 15.10.2009

Some questions

● Can we really adapt new features quickly?

● Does our laser controller need the same features as Ubuntu?

● Do we get new features when our project demands them?

● Can we stay with selected old versions if we want to?
(i.e. gtk -> broken with newer DirectFB backends)

Slide 9 - http://www.pengutronix.de - 15.10.2009

Some questions

● Can systems be customized exactly to our needs?

● Customizing is the most important feature for us!

● Examples:

● Flicker-free booting of 400 MHz i.MX27 into Qt in < 6 s

● Small headless systems with something like 8 MB RAM

● We don't have SQL databases, Perl, ... but distros often rely on that

● Adapt kernel + userland to well-know embedded hardware
No need for initramfs, module loading etc.

Slide 10 - http://www.pengutronix.de - 15.10.2009

Have Systems to be small?

● Size doesn't matter that much
any more, these days:

phyCORE-i.MX35
1 GB NAND flash

● We still have systems with 16 MB NOR flash in the field!

● Most Standard distros can't be scaled
below about 300 MB without losing
functionality (in-field package update)

● NAND is good for space requirements

● Reliability...?

Slide 11 - http://www.pengutronix.de - 15.10.2009

Entering PTXdist: Build your own Linux

● Most standard distros don't fit our needs (at least not at the moment)

● They cannot be reproduced quickly enough.

● Too many packet inter-dependencies
which don't matter on embedded systems

● Customizing is a big problem.

● So for embedded usage, our current policy is „build your own“.

● This may change in the future (customize moblin with ptxdist?)

Slide 12 - http://www.pengutronix.de - 15.10.2009

How do you build an Embedded Linux?

● Just do this, in the right order:

● And this is only a headless realtime system,

without gtk+glib+atk+pango+cairo+...,
without dbus,
without Qt,
without x.org, ...

Slide 13 - http://www.pengutronix.de - 15.10.2009

PTXdist: Building Blocks

● What do we have to do, for the whole system?

1) Configure which packages to have on the target.

2) Configure options for the packages.

3) „ptxdist go“ -> Do All Necessary Things (TM)

4) Find out all dependencies and kick stages in right order.

Slide 14 - http://www.pengutronix.de - 15.10.2009

Packages can be overwritten on workspace:

bin/ptxdist
(Tool)

rules/bash.make
(Rule Sets)

rules/bash.in
(Menus)

ptxconfig
(Project Configuration)

rules/bash.make
(projektsp. Rule Sets)

rules/bash.in
(projektspez. Menu)

patches/bash-3.0/...
(projektsp. Patches)

patches/bash-3.0/...
(Patches)

other Files
(projektspez.)

root/
root/bin/
root/etc/
root/home/
root/lib/
root/usr/lib/
root/usr/bin/
...

PTXdist Projekt / OSELAS.BSP() Root Filesystem

Slide 15 - http://www.pengutronix.de - 15.10.2009

Configuration

● Kconfig based -
kernel hacker
compatible mouse-
less operation

Slide 16 - http://www.pengutronix.de - 15.10.2009

Configuration

● Which Packages
will go into our
distribution?

● How are the package
configured?

Slide 17 - http://www.pengutronix.de - 15.10.2009

Configuration

● The result of the
configuration is a
.config style file:

● valid shell syntax
valid make syntax

● The configuration
contains both
information:

- what to build
- how to build it

Slide 18 - http://www.pengutronix.de - 15.10.2009

Liftoff

● „ptxdist go“

Do all Necessary
Things (TM)

● Execute stages:

get
extract
prepare
compile
install
targetinstall

● Solve
Dependencies

Slide 19 - http://www.pengutronix.de - 15.10.2009

The Result of „ptxdist go“

● build root filesystem
in the platform dir

● „root/“ is
NFS mountable

● „root-debug“:
for gdbserver use

● Development workflow:

- boot kernel via TFTP
- mount root/ with NFS-root.

Slide 20 - http://www.pengutronix.de - 15.10.2009

What do packages do?

● A „package“ consists of:

● configuration, by a Kconfig file „packagename.in“
● a rule set, specified in „packagename.make“
● maybe a quilt stack of patches

● The package header contains definitions:

Slide 21 - http://www.pengutronix.de - 15.10.2009

Packages

● The rest of the packagename.make file contains „stages“:

„get“

„extract“

„prepare“

„compile“

„install“

„targetinstall“

„clean“

Slide 22 - http://www.pengutronix.de - 15.10.2009

Get Stage

● Get tarball from upstream, if not already there (with fallback URL)

● Accumulate tarballs in a dir:
can be shared for different developers

Slide 23 - http://www.pengutronix.de - 15.10.2009

Extract Stage

● „tar xf package-x.y.z.tar.bz2“

(tar.bz2, tar.gz, zip)

● Apply patches (quilt stack)

● Fixup ltmain.sh and configure scripts to avoid path hardcoding

Slide 24 - http://www.pengutronix.de - 15.10.2009

Prepare Stage

● „./configure --host=... --build=... --enable-foo --with-bar=baz“

● configure switches can be set in correspondence with menu entries

● non autotoolized packets :-/

Slide 25 - http://www.pengutronix.de - 15.10.2009

Compile Stage

● „make“

● Multi core usage: „make -j <2*cores>“

● Broken packages are built with -j 1

Slide 26 - http://www.pengutronix.de - 15.10.2009

Install Stage

● „make install DESTDIR=<somewhere>“

● development host side installation for
libs, binaries, headers, man pages, .pc files ...

Slide 27 - http://www.pengutronix.de - 15.10.2009

Targetinstall Stage

● „make install“: good for development, too large for the target!

● Targetinstall: full control over what goes into the image

● Package content may be dependend on menu/configuration!
(different to standard distros)

● This is where the target customization takes place.

Slide 28 - http://www.pengutronix.de - 15.10.2009

Targetinstall Stage

Slide 29 - http://www.pengutronix.de - 15.10.2009

Workspace Concept

● All project work is being executed on a „project workspace“,
which is a directory containing all project relevant files.

● The workspace is pretty small:

Slide 30 - http://www.pengutronix.de - 15.10.2009

Building Cross GCCs: OSELAS.Toolchain ()

● An important prerequisite for building embedded systems are
Toolchains: gcc / binutils / glibc / kernel headers

● But where to get recent toolchains from?

● Started with Dan Kegel's crosstool,
which was an excellent choice at that time.

● We noticed that Dan had different aims than we have:

● We want to have recent gcc + glibc versions
● Patches have to be separated in a clean way, per tool revision
● Problems have to be sorted out with upstream
● Crude hacks which have been necessary in the gcc-2.95.3 era

are not needed for gcc-4.3.3 any more :-)

Slide 31 - http://www.pengutronix.de - 15.10.2009

Building Cross GCCs: OSELAS.Toolchain ()

● We tried to be a good OSS citisen and make crosstool better, instead of
forking our own project. Unfortunately, it turned out that crosstool was
so broken internally, that starting from scratch was faster and cleaner.

● OSELAS.Toolchain() is based on ptxdist's make mechanics to deduce
the order of things which have to be done

● Selecting a set of config options is a simple matter of selecting the
right ptxconfig file (we have > 25 toolchains in 1.99.2).

● Building a toolchain goes like „ptxdist go“

● Patches are documented in a clean way, canonical patch headers

● Several topics have been resolved in the GCC bugzilla so far

Slide 32 - http://www.pengutronix.de - 15.10.2009

Other Cool Features

● ipkg: Installing packages on the target is possible.

● Build system could be changed towards other packet formats, so we
are neither fixed to „do-it-yourself“, nor to .ipkg

● Complete recompilation with synced config: Want to oprofile your
system? Just build it completely with debug symbols ...

● Platform Abstractions: Hardware config is separated from software
config; so a project specified in a ptxconfig file can be built for different
hardware platforms.

● Simulation: build against KVM for development

Slide 33 - http://www.pengutronix.de - 15.10.2009

crossdev@send-patches.org

● The idea came up on FOSDEM 2009:

● Have common mailing list for all
cross-build-system people

● collect patches worth to
be upstreamed

● review & make ready for prime time

● submit things to the upstream maintainers

● Help us making Linux better!

Slide 34 - http://www.pengutronix.de - 15.10.2009

Future

● ptxdist 2.0 ...?

● Time based releases?

● Customize other things than rootfs+toolchain?

Slide 35 - http://www.pengutronix.de - 15.10.2009

Ressources

● PTXdist Web Site:
http://www.pengutronix.de/software/ptxdist/index_en.html

● Mailing Lists (ptxdist + send-patches.org):
http://www.pengutronix.de/mailinglists/index_en.html

● IRC Channel:
irc.freenode.net
#ptxdist

Slide 36 - http://www.pengutronix.de - 15.10.2009

Thanks for your Interest! Questions...?

