Stale data, or how we (mis-)manage
modern caches

Mark Rutland <mark.rutland@arm.com>
Embedded Linux Conference 2016

The Architecture for the Digital World® ARM

Scope

The behaviour of caches is surprisingly complex!
= Depends on architecture, implementation, and integration
= Commonly misunderstood by software engineers

= Potential for subtle, non-repeatable software bugs

This talk is about the general behaviour in ARMv8-A
= Largely (but not entirely) applicable to ARMv7-A
= Focus on architectural guarantees and requirements

= The Architecture Reference Manual ("ARM ARM") is authoritative

ARM

Warning

Examples in this presentation:

describe non-architectural details

assume specific potential implementations
assume specific runtime configurations
act as intuitive existence proofs

do not describe all problems

These do not define the architectural envelope!

ARM

Today: CPUs

Modern CPUs, even simple ones, gain efficiency and performance by many techniques:
= Automatic prefetching
= Store buffering
= Out-of-order execution

= Speculation

These have a non-deterministic impact on cache behaviour!

CPU:s are likely to become more aggressive over time, making cache behaviour less deterministic.

‘ ARM

Today: Cache coherence protocols

Modern (SMP) systems support cache coherence:

Accesses to a location act is if using the same copy of that location
(e.g. a load returns the value of the last store)

Cache coherence protocols are becoming more advanced:
= Reduced memory traffic (e.g. fewer writebacks)
= Scalable to larger systems (e.g. shared lines)
= Fewer incidental coherence guarantees

= More stringent maintenance requirements in practice

ARM

Today: Topology

Modern systems typically have many CPUs
= More CPUs means more non-determinism

= Also means more caches

Cache-coherent DMA masters are more common
= Yet more non-determinism

= Erroneous programming may break coherence!

Shared system caches becoming popular

= Typically much larger; can hold data for longer

ARM

Today: looking forward

Systems are more complex and more varied than they used to be!

... and likely to become more so.

We cannot predict what future systems will look like.

... but we know they must follow architectural rules!

ARM

ARM architecture: cache basics

Modified Harvard architecture:
= 0 to 00™ levels of instruction caches (I$)
= 0to 00™ levels of data caches (D$)

= 0 to 00™ levels of unified caches (U$)

Many implementations permitted:
= Scales to power/performance/area points

= May be asymmetric (e.g. big.LITTLE)

*CLIDR_EL1 lists 0 to 7 levels, may not include all caches!

r 1 1
D$ 1$ D$ 1$
[

Unified $

I

System $

CPU3
L1 1
D$ 1$ D$
| |

Unified $

I

Memory

ARM

ARM architecture: cache coherence

Coherence in the ARM architecture:
= D$ - D$ coherence ensured by hardware™
= D$ - Memory coherence not ensured
= D$ - I$ coherence not ensured

= |$ - I1$ coherence not ensured

Where coherence is required, but not ensured, explicit

cache maintenance is necessary.

*So long as consistent memory attributes are used.

CPUO CPU | CPU2 CPU 3
Pt 11 1T 1 1 1
1$ D$ 1$ D$ 1$ D$ 1$ D$
r+tr 1 1 1T 1 1 1

Unified $ Unified $
System $
Memory

ARM

ARM architecture: cache coherence

Every memory access has associated memory attributes:
= Memory type
= Cacheability
= Shareability

Coherence of a location requires consistent use of memory attributes.

Inconsistent usage (Mismatched memory attributes) can result in long-term loss of coherence!

. ARM

ARM architecture: memory types

Device:
= Accesses may have side-effects (e.g. MMIO)
= Subsumes Strongly Ordered from ARMv7-A

= No cacheability

Normal:
= Accesses do not have side effects (e.g. DRAM)
* redundant accesses permitted

= Several cacheability options possible

ARM

ARM architecture: Cacheability

Many cacheability options for Normal memory: a0 —l e o
= Non-Cacheable i I i T 1 i 1 i
* Write-Through (Non-)Transient ? D; ? D; l; D; l; D;
* Write-Back (Non-)Transient U"iﬁfds 7777777777777777777777 U"mfds 7777777777
System $
Controlled Separately for Inner and Outer caches
= Inner caches are closest to CPU
= Outer Caches are furthest from CPU Memory

* Boundary is IMPLEMENTATION DEFINED

ARM

ARM architecture: Shareability domains (1)

Hierarchical shareability domains contain CPUs:

= Non-Shareable
= |nner Shareable
= Quter Shareable

= System®

Coherence of a location can be limited to a particular
domain, affecting caches.

*A location cannot be System shareable, but barriers can target the System domain

ARM

ARM architecture: Shareability domains (2)

Non-Shareable domain: | Unified $
= Covers a single CPU. I
System $
* Not guaranteed to be coherent with any other
CPUs.
Memory

ARM

ARM architecture: Shareability domains (3)

Inner Shareable domain:

= Covers CPUs intended for use by a single OS or
hypervisor.

= May cover some devices

CPUO

CPU |

Unified $

I

System $

Memory

ARM

ARM architecture: Shareability domains (4)

E CPUO CPU | CPU 2 CPU 3 E
Outer Shareable domain: Unified $ Unified $
= Covers the largest set of CPUs which can be I]
coherent. | System $ |
= May cover some devices
Memory

ARM

ARM architecture: cache states

The ARM architecture does not mandate a specific cache coherence protocol.

Commonly, protocols allow for a location to be:

= Invalid: No data in any caches

= Clean: Copied from memory, unchanged
Present in some caches

* Dirty: Has been written to
Present in some caches

ARM

ARM architecture: general cache behaviour

Caches may allocate clean lines at any time for cacheable locations
* Due to speculation, prefetching, etc

= Impossible to prevent

Caches may write back dirty lines at any time
= To make space for new allocations
= Even if MMU is off

= Even if Cacheable accesses are disabled (caches are never 'off')

ARM

Cache maintenance

Sometimes we need coherence that the hardware doesn't guarantee:

= Non-coherent DMA
* Modifying instructions

= Changing memory attributes for a location

We can ensure coherence for these cases with cache maintenance.

ARM

Cache maintenance: terminology

The ARM architecture defines three maintenance operations:
= Clean: Write dirty data back, marking cached copies clean
* Invalidate: delete data from caches

= Clean+Invalidate: Clean followed by Invalidate

No "flush” is defined - may mean any of the above.

ARM

20

Cache maintenance: Set/Way

Instructions for IMPLEMENTATION DEFINED power-up and power-down cache management:
= DC ISW: Data Cache Invalidate by Set/Way
= DC CSW: Data Cache Clean by Set/Way
= DC CISW: Data Cache Clean+Invalidate by Set/VWay

These instructions cannot be used to ensure coherence:
= Only affect caches local to a CPU (not other CPUs or system caches)
= Not atomic: race with usual behaviour of caches

= Misuse may result in a loss of coherence!

ARM

21

Cache maintenance: VA

Cache maintenance by VA can be used to ensure coherence:
= Affects all caches for shareability domain of VA
= ... including system caches (since ARMv8-A¥)
* No race with usual cache behaviour

= Posted: batches completed with memory barriers

Maintenance by VA operates to two conceptual points:
= Point-of-Coherency (PoC)

= Point-of-Unification (PoU)

*In ARMv7-A, IMPLEMENTATION DEFINED maintenance may be necessary

ARM

2

ARM architecture: PoC

CPUO CPU | CPU2 CPU 3
Point-of-Coherency (PoC): | L | L | L | L
1$ D$ 1$ D$ 1$ D$ 1$ D$
The point at which all accesses to a memory f I f I 1 ! 1 !
Unified $ Unified $
location see the same copy of that location. I I
(i.e. where all accesses are coherent). .
ystem $
Device
Typically the PoC is main memory, but invisible caches :
may exist between the PoC and memory. 3
Memory

23

Cache maintenance: VA to PoC

Instructions for ensuring coherence with the PoC:
= DC CVAC: Data Cache Clean by VA to the PoC
= DC IVAC: Data Cache Invalidate by VA to the PoC
= DC CIVAC: Data Cache Clean+invalidate by VA to the PoC

Useful for:
* Non-coherent DMA
= Changing memory attributes™

= Changing instructions (in some cases)

*requires care to avoid races with usual cache behaviour

24

ARM

ARM architecture: PoU

CPUO
Point-of-Unification (PoU): ,L DI$
The point at which the instruction caches and Tlfs ”””””” :
' Unified .

data caches of a particular CPU see the same s pp 3
copy of a memory location.

Each CPU has its own PoU, which may be shared with
some other CPUs in the system.

ARM

25

Cache maintenance: VA to PoU

Instructions for ensuring coherence with a set of PoUs:
= DC CVAU: Data Cache Clean by VA to the PoU
= IC IVAU: Instruction Cache Invalidate by VA to the PoU

Affects all caches for shareability domain of VA, prior to the set of PoUs for that domain.

ARM

26

Cache maintenance: all (instruction)

Instructions for invalidating entirety of instruction cache(s)
= IC IALLU: Instruction Cache Invalidate All to PoU (local)
= TC TALLUIS: Instruction Cache Invalidate All to PoU (Inner Shareable)

Requires prior D$ maintenance to PoU or PoC!

There are no all data/unified maintenance instructions

27

ARM

Cache maintenance: dodgy DMA

I. CPU allocates buffer

2. CPU invalidates buffer by VA to PoC
3. Non-coherent DMA into buffer

4. CPU reads buffer

CPU reads stale data. Why?

28

ARM

Cache maintenance: dodgy DMA

I. CPU allocates buffer

2. CPU invalidates buffer by VA to PoC
3. Non-coherent DMA into buffer

4. CPU reads buffer

CPU reads stale data. Why?

29

Prefetching or speculation can occur between

steps (1) and (4)!

ARM

Cache maintenance: dodgy DMA

I. CPU allocates buffer

2. Non-coherent DMA into buffer

3. CPU invalidates buffer by VA to PoC
4. CPU reads buffer

CPU still reads stale data. Why?

ARM

Cache maintenance: dodgy DMA

I. CPU allocates buffer

2. Non-coherent DMA into buffer

3. CPU invalidates buffer by VA to PoC
4. CPU reads buffer

Buffer had dirty lines which were evicted between
steps (2) and (3)!

CPU still reads stale data. Why?

ARM

Cache maintenance: dodgy DMA

I. CPU allocates buffer

CPU invalidates buffer by VA
Non-coherent DMA into buffer
CPU invalidates buffer by VA
CPU reads buffer

uiohc W

Does CPU read the DMA'd data?

ARM

Cache maintenance: dodgy DMA

I. CPU allocates buffer

CPU invalidates buffer by VA
Non-coherent DMA into buffer
CPU invalidates buffer by VA
CPU reads buffer

Yes! Step (2) avoids eviction of dirty lines, and
step (4) removes lines allocated by prefetching or
speculation.

uiohc W

Does CPU read the DMA'd data?

ARM

Closing

The behaviour of caches can be surprising, and careful management is required.

We can have fewer surprises if we think in terms of architecture.

The ARM architecture provides a simple, scalable cache model.

ARM

Thank You

The trademarks featured in this p ion are regis d and/or i d trad ks of ARM limited (or its subsidiaries) in the EU
andlor elsewhere. Al rights reserved. All other marks featured may be trademarks of their respective owners.

The Architecture for the Digital World® ARM

Set/Way maintenance: example (intuition)

LI cache L2 cache memory

cluster

cru E x : 0x00000000

;_S_(-_: Invalid . Clean . Dirty

. ARM

Set/Way maintenance: example (intuition)

LI cache L2 cache memory

clean+invalidate

..................

N ... B N T A R

cluster

'LS_(-_: Invalid - Clean - Dirty

, ARM

Set/Way maintenance: example (intuition)

LI cache L2 cache memory

..................

cluster

;_S_(-_: Invalid . Clean . Dirty

. ARM

Set/Way maintenance: example (intuition)

LI cache L2 cache memory
clean+invalidate
] [
32 CPU ! X » 0x00000000
S Lo

'LS_(-_: Invalid - Clean - Dirty

, ARM

Set/Way maintenance: example (intuition)

LI cache L2 cache memory

....................................

crPy ; x : : X : OxfEEELEEs

cluster

;_S_(-_: Invalid . Clean . Dirty

. ARM

Set/Way maintenance: example (speculation)

LI cache L2 cache memory

cluster

cru E x : 0x00000000

;_S_(-_: Invalid . Clean . Dirty

. ARM

Set/Way maintenance: example (speculation)

LI cache L2 cache memory

clean+invalidate

..................

N ... B N T A R

cluster

'LS_(-_: Invalid - Clean - Dirty

. ARM

Set/Way maintenance: example (speculation)

LI cache L2 cache memory

..................

cluster

;_S_(-_: Invalid . Clean . Dirty

\ ARM

Set/Way maintenance: example (speculation)

LI cache L2 cache memory
speculation
N e,
§ CPU ' X *--ooeemmee s Oxffffffff 0x00000000
S R ' H

;_S_(-_: Invalid . Clean . Dirty

) ARM

Set/Way maintenance: example (speculation)

LI cache L2 cache memory

cluster

cru E x : 0x00000000

;_S_(-_: Invalid . Clean . Dirty

) ARM

Set/Way maintenance: example (speculation)

LI cache L2 cache memory

clean+invalidate

cru E x : 0x00000000

cluster

'LS_(-_: Invalid - Clean - Dirty

. ARM

Set/Way maintenance: example (speculation)

LI cache L2 cache memory

cluster

cru E x : 0x00000000

;_S_(-_: Invalid . Clean . Dirty

, ARM

Set/Way maintenance: example (migration)

LI cache L2 cache memory

CPU Oxffffffff

..................

E x : 0x00000000

cluster

cPU : X

;_S_(-_: Invalid . Clean . Dirty

. ARM

Set/Way maintenance: example (migration)

LI cache L2 cache memory

CPU Oxffffffff

E : : X : 0x00000000
© speculation H . ’ H
Y, H
cPu : X :

;_S_(-_: Invalid . Clean . Dirty

\ ARM

Set/Way maintenance: example (migration)

LI cache L2 cache memory

cPU X

..................

E x : 0x00000000

cluster

CPU Oxffffffff

;_S_(-_: Invalid . Clean . Dirty

\ ARM

Set/Way maintenance: example (migration)

LI cache L2 cache memory

.................

cPU e

..................

E x : 0x00000000

cluster

CPU Oxffffffff

;_S_(-_: Invalid . Clean . Dirty

, ARM

Set/Way maintenance: example (migration)

LI cache L2 cache memory

cPU X

..................

E x : 0x00000000

cluster

CPU Oxffffffff

;_S_(-_: Invalid . Clean . Dirty

. ARM

Set/Way maintenance: example (migration)

LI cache L2 cache memory

..................

cPU e

cluster

0x00000000

CPU Oxffffffff

;_S_(-_: Invalid . Clean . Dirty

, ARM

Set/Way maintenance: example (migration)

LI cache L2 cache memory

cPU X

..................

E x : 0x00000000

cluster

CPU Oxffffffff

;_S_(-_: Invalid . Clean . Dirty

) ARM

Set/Way maintenance: example (migration)

LI cache L2 cache memory

CPU X

..................

E x : 0x00000000

cluster

CPU Oxffffffff

;_S_(-_: Invalid . Clean . Dirty

) ARM

Set/Way maintenance: example (migration)

LI cache L2 cache memory

CPU Oxffffffff

..................

E x : 0x00000000

cluster

cPU : X

;_S_(-_: Invalid . Clean . Dirty

) ARM

Set/Way maintenance: example (system caches)

LI cache system cache

. e,
g cpu OXEFFFFEEE : X
© : Lol
LS_(-.: Invalid . Clean . Dirty
57

memory

0x00000000

ARM

Set/Way maintenance: example (system caches)

LI cache system cache

memory

clean+invalidate

..................

cPu W - : X : 0200000000

cluster

'LS_(-_: Invalid - Clean - Dirty

. ARM

Set/Way maintenance: example (system caches)

LI cache system cache memory

..................

cluster

;_S_(-_: Invalid . Clean . Dirty

, ARM

Set/Way maintenance: example (system caches)

LI cache system cache memory
777
] [
32 CPU ! X » 0x00000000
S Lo

'LS_(-_: Invalid - Clean - Dirty

. ARM

Set/Way maintenance: example (system caches)

LI cache system cache memory

..................

cluster

;_S_(-_: Invalid . Clean . Dirty

. ARM

Set/Way maintenance: example (system caches)

LI cache system cache memory
LDR
N e Pyt
2 cPU : X *--- OxfLEELEEE 0x00000000
S T

;_S_(-_: Invalid . Clean . Dirty

. ARM

Set/Way maintenance: example (system caches)

LI cache system cache

. e,
g cpu OXEFFFFEEE : X
© : Lol
LS_(-.: Invalid . Clean . Dirty
63

memory

0x00000000

ARM

