
An Introduction to Asymmetric Multiprocessing:
when this architecture can be a game changer

and how to survive it.

Nicola La Gloria, Laura Nao
Kynetics LLC

Santa Clara, California

Hybrid Architecture: warpx.io
The Hybrid Design Architecture (HDA)
combines the power of an application
processor with the ease-of-use of
micro-controllers.

Software on warpx HDA

SMP vs AMP

SMP on homogeneous architectures:

● Single OS controlling two or more
identical cores sharing system
resources

● Dynamic scheduling and load
balancing C

ore 1

C
ore N

Kernel SMP

OS

App App

. . .

SMP vs AMP

C
ore 1

C
ore N

MCAPI

OS OS/RTOS

App App Task TaskAMP on heterogeneous architectures:

● Different OS on each core -->
full-featured OS alongside a
real-time kernel

● Inter processor communication
protocol

● Efficient when the application can
be statically partitioned across
cores - high performance is
achieved locally

. . .

Supervised vs Not Supervised

● Strong isolation
● Hides non-trivial AMP details (e.g. resource

assignment, inter-core communication)
● Security and robustness
● Overhead of a software layer

● Achieve best performances by running
natively

● Boot sequence complexity
● Harder to debug

Interprocessor Communication

NXP i.MX7 overview
● Cortex-A7 core + Cortex-M4 core
● Master - Slave architecture

○ A7 is the master
○ M4 is the slave

● Inter processor communication
○ MU - Messaging Unit
○ RPMsg component (OpenAMP framework)

● Safe sharing of resources
○ RDC - Resource Domain Controller

NXP i.MX7 - RDC

NXP i.MX7 IPC - MU

MAC (VirtIO)

The OpenAMP framework - RPMsg

RPMsg on Linux

Hybrid Linux/FreeRTOS Demo
Demo Goal:

● IMU sensor (I2C) read by MCU task
● Calculate objective function (module of acc, mag, gyro vectors)
● Log/plot sensor samples on MPU
● Safely recover from a kernel panic

Hardware Setup

● Boundary Devices Nitrogen 7, Toradex Colibri i.MX7 SOM
○ NXP i.MX7D processor - ARM dual Cortex-A7 + ARM Cortex-M4
○ Segger J-Link Probe

Cortex M4 Bring Up (1)
Environment setup:

● Download FreeRTOS sources
https://github.com/boundarydevices/freertos-boundary.git

● Download GNU ARM Embedded Toolchain
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/download

● Example applications for Cortex-M4 are located in the
examples/imx7d_nitrogen7_m4/ folder

● Scripts for building both debug and release binaries are available in the
armgcc subfolder

https://github.com/boundarydevices/freertos-boundary.git
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/download

Cortex M4 Bring Up (2)
M4 Binary application can be loaded on the Cortex-M4 in different ways:

● U-Boot - ums gadget + m4update
● using remoteproc framework (linux userspace)
● using imx-m4fwloader from NXP (linux userspace):

https://github.com/codeauroraforum/imx-m4fwloader

M4 code can be linked and loaded to one of the following:

● TCM - 32KB (preferred)
● OCRAM - 32KB
● DDR - up to 1MB

● QSPI Flash - 128KB

https://github.com/codeauroraforum/imx-m4fwloader

IDE Setup
● Eclipse for C/C+

○ GNU MCU Eclipse : plugins and tools for embedded ARM development -
https://marketplace.eclipse.org/content/gnu-mcu-eclipse

● GDB
● J-Link scripts for iMX7D for debugging both Cortex-A7 cores and Cortex-M4 -

https://wiki.segger.com/IMX7D
● FreeRTOS Kernel Awareness plugin from NXP

http://freescale.com/lgfiles/updates/Eclipse/KDS
● ARM DS-5 (not free)
● Sourcery Codebench (not free)

https://marketplace.eclipse.org/content/gnu-mcu-eclipse
https://wiki.segger.com/IMX7D
http://freescale.com/lgfiles/updates/Eclipse/KDS

Workbench

code

MPU
console

Break
points
(MCU)

FreeRTOS
kernel
awareness

MCU
console

Demo Parameters
Remote core:

● Sample IMUs every 10ms
● Calculate the objective function on MCU (module of vectors)
● Buffer of 300 elements = 3Kb (stored TCM Memory only 32 Kb)
● Items (12 byte each) are dequeued and sent to master 10 at a time every 100

ms

Master core:

● Master reads incoming samples by polling the character device

Architecture Overview

start_cmd, stop_cmd, heartbeatLinux 4.9 FreeRTOS 1.0.1

The OpenAMP framework - RPMsg

Control Flow (2 cores)

● S0 RPMsg channel is down
● S1 RPMsg channel is up, /dev/rpmsg0 is created
● S2 RPMsg channel is up, endpoint created, data is

dumped into a log file

● S0 RPMsg channel is down
● S1 RPMsg channel is up (sampling IMU sensor,

buffering data)
● S2 RPMsg channel is up, sending data to master

core, (sampling IMU sensor, buffering data),

Register rpmsg char driver
+ probe

open /dev/rpmsg0

read /dev/rpmsg0

Channel created

stop_cmd

Master is dead

start_cmd

Master
heartbeat

rpmsg_char_client Data sender task

close /dev/rpmsg0

What if Linux Kernel Panics

● Kexec: system call to load and boot into another kernel from the currently
running kernel (4.9.74).
○ crashkernel=128M [normal kernel cmdline]
○ irqpoll, nosmp, reset_devices [crash kernel

cmdline]
○ --load-panic option

● Kdump: Linux mechanism to dump machine memory content on kernel
panic.

● Kexec/Kdump support on ARM platforms is still experimental

Video of the Demo

VIDEO

Pitfalls

● Before announcing the remote service, MCU checks whether master is
up. If notification arrives too early (virtqueue kick function call) when
booting crash kernel the system might hang

● Sometimes kexec still hangs and fails to soft-reboot - more frequent when
streaming continuously instead of sending data bursts (but we don’t know
why)

References
● OpenAMP project page: https://github.com/OpenAMP/
● Asymmetric multiprocessing and embedded linux (ELC 2017):

https://elinux.org/images/3/3b/NOVAK_CERVENKA.pdf
● Mantainers:

○ Open-amp:
■ Wendy Liang

○ RPMsg (Linux)
■ Ohad Ben-Cohen
■ Bjorn Andersson

○ Kexec (Linux)
■ Eric Biederman

○ Kdump (Linux)
■ Dave Young
■ Baoquan He

https://github.com/OpenAMP/
https://elinux.org/images/3/3b/NOVAK_CERVENKA.pdf

Q/A

