TCG TPM2 Software Stack & Embedded Linux

Philip Tricca philip.b.tricca@intel.com

Agenda

Background

- Security basics
- Terms

TPM basics

- What it is / what it does
- Why this matters / specific features

TPM Software Stack

- Architecture / Design
- Getting Started
- Getting Results

Level Set

There is no magic, there are no silver bullets

- "security" takes the whole village
- Architecture to implementation to maintenance
- There is no such thing as "a secure system", only secure enough
- YOUR CUSTOMERS define "secure enough"

The Basics

Using the TPM does not a secure system make

- FTC case against ASUS: didn't take "reasonable steps" to secure its routers
 - Must maintain a comprehensive security program
- Mirai (nuf said)
- Basics == "reasonable steps"
 - Disable services / exclude tools / minimize exposure (aka attack surface)
 - Use writable storage only when you must
 - SIGNED UPDATES!
- Securing general purpose computers is a nightmare, embedded more tractable

Threat modeling

A process by which we identify, enumerate, prioritize & document

- Assets
- Threats to them
- IMHO the most important part of your security program
- Prioritize: decide where your efforts are best spent
 - Identify trade-offs
 - Accurately describe the properties of your system
 - What it protects against: threats mitigated
 - What it does not: threats accepted
 - And most importantly: why

If your team doesn't model threats ...

Please do?

- Much of the body of knowledge was developed in Microsoft
- MSDN has lots of free content.
 - https://msdn.microsoft.com/en-us/library/ff648644.aspx
- OWASP Application Threat Modeling
 - https://www.owasp.org/index.php/Application_Threat_Modeling
- Adam Shostack's book was my introduction (2014)
- Swiderski and Snyder book (2004)

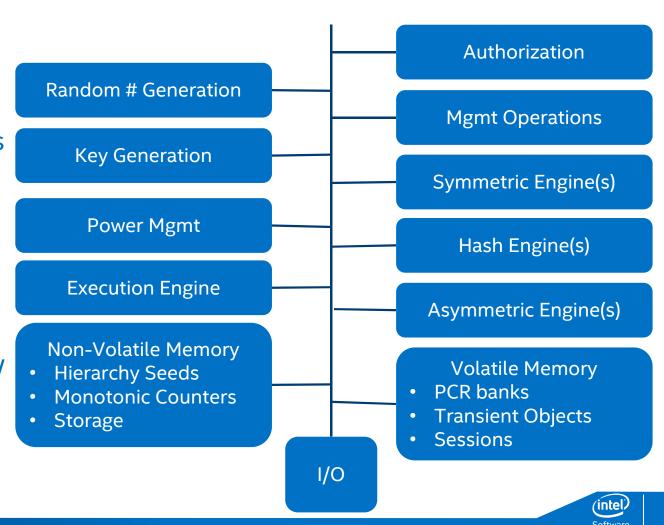
Terms

Classic security concepts:

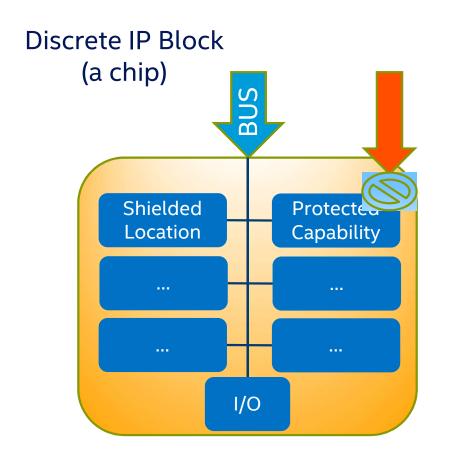
- Confidentiality
- Integrity
- Authentication
- Authorization (satisfy TPM2 policy)
- Non-repudiation

Use the TPM2 to build systems that implement these principles

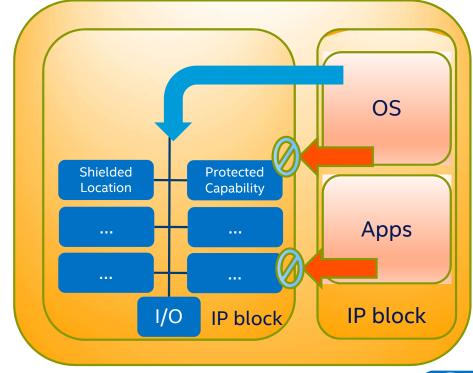
TPM Protections


Documented in TPM Rev 2.0 Part-1: Architecture

- Frames protections offered by TPM2 in section 10:
 - Shielded Location
 - Protected Capability
 - Protected Object
- TPM operations must be correct, sensitive data must be protected
- TPM severely memory constrained
 - offload storage to applications, encrypt all protected objects when not in shielded location
- Nature of physical security protections dictated by customer / requirements

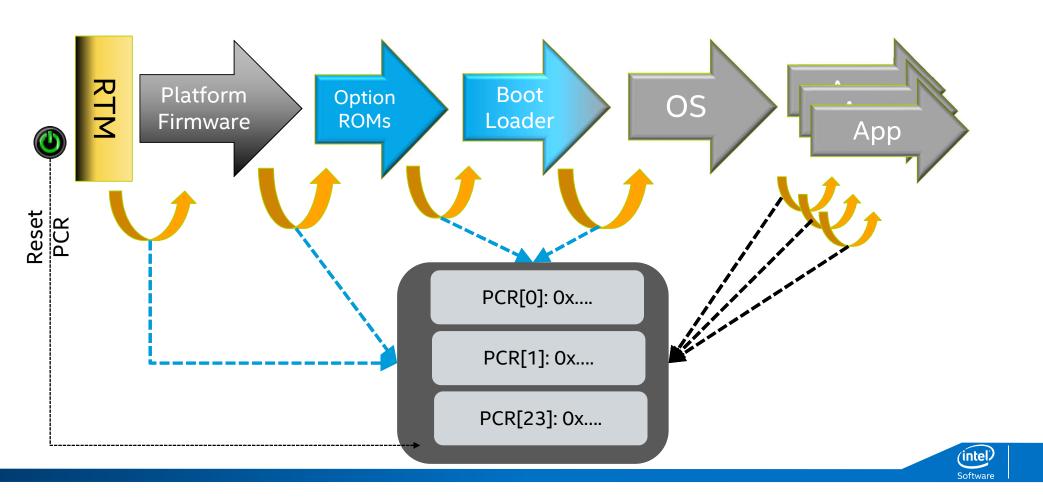

What is a TPM?

Small Crypto Engine


- Cryptographic functions
- Hashing functions
- Key generation & protection
- RNG
- Integrity measurement / reporting

TPM2 Implementation: domain separation

Integrated IP Block


Integrity: Measured Boot

Platform Configuration Register (PCR) & the "Extend" operation

- Typically 24 PCRs in a TPM, addressed with index: PCR[0] PCR[23]
- PCR is a Shielded Location, Extend operation is Protected Capability
- PCR usage (store hashes of which components) defined in TCG platform specs
- Software Measurement is synonymous with the hash produced
 - Extend hash of object (executable, config etc) into PCR
 - Extend: $PCR[0]_N = H(PCR[0]_{N-1} | X)$
 - PCR state becomes one way function depending on previous state
 - Computationally infeasible to forge, easy to verify

Integrity: Measured Boot

TCG TPM2 Software Stack: design goals

System API (SYS)

- 1:1 mapping to TPM2 commands
- No.
 - file IO
 - crypto
 - heap
 - external library dependency

Enhanced SAPI (ESYS)

- 1:1 mapping to TPM2 Commands
- Additional commands for utility functions
- Provides Cryptographic functions for sessions
- No file IO
- Requires heap

Feature API (FAPI)

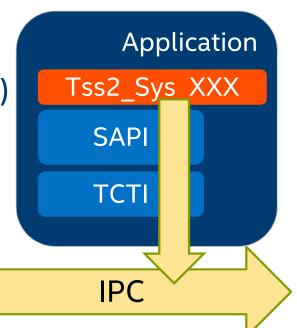
- File IO
- · Requires heap
- Must be able to do retries
- Context based state
- Must support the possibility of reduced application code size by offering static libraries

TPM Command Transmission Interface (TCTI)

- Abstract command / response mechanism
- Decouple APIs driving TPM from command transport / IPC
- No crypto
- No heap, file I/O

TPM Access Broker and Resource Manager (TABRM)

- Power management
- Potentially no file IO depends on power mgmt.


- Abstract Limitations of TPM Storage
- No crypto

TPM2 software stack

System API & TCTI specification

- TPM2 Command Transmission Interface (TCTI)
 - Abstraction to hide details of IPC mechanism
 - libtcti-device & libtcti-socket
 - Adds flexibility missing from 1.2 TSS
- System API (SAPI)
 - Serialize C structures to TPM command buffers
 - One-to-one mapping to TPM commands (all 100+)
 - Minimal external dependencies: libc
 - Suitable for highly embedded applications / UEFI

TPM2 TSS Components: w/ resourcemgr

Use case: RNG

TPM requires RNG for key creation, nonce generation.

- an entropy source and collector
- state register
- mixing function (typically, an approved hash function)
- Differentiation between TPMs w/ certification (NIST SP800-90 A)
- TPM RNG integrated with Linux kernel RNG
 - If you need an entropy source DO NOT use TPM RNG alone
 - Load the 'tpm_rng' kernel driver & setup rng-tools
 - Use /dev/(u)?random

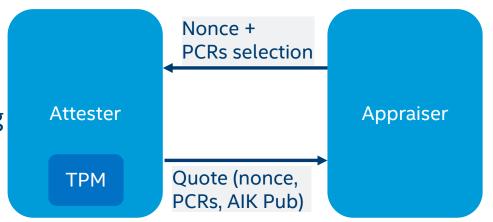
Use case: Sealed Storage aka Local Attestation

Use TPM2 policy authentication as access control on TPM protected object

- Microsoft Bitlocker uses this mechanism for disk crypto keys
- OpenXT virtualization system uses similar mechanism
- Assumes measured boot records TCB in PCRs: software identity
 - Create TPM object holding auth data for disk crypto
 - Bind object to PCR policy: select PCRs based on TCB & requirements
 - On successful boot w/ PCRs in expected state, load object
 - Can be used to hold secrets for LUKS volumes

Use case: Attestation (1)

The presentation of verifiable evidence of software state to a remote party


- Software identity stored in PCRs: depends on correct measured boot!
- TPM Quote command produces signed report of PCR state
 - Can include arbitrary user data in quote (don't mix in Nonce!)
 - Signed using purpose specific key: attestation identity key
- Verifier challenges attester
 - Provides nonce (freshness)
 - Combined with hash of requested / negotiated PCRs in signed quote

Use case: Attestation (2)

Attestations are simple cryptographic operations over data (sign)

- "the Devil is in the details"
- Association between AIK & EK links AIK to platform
 - "privacy CA" as trusted 3rd party to protect anonymity of AIK
 - Enhanced Privacy ID (EPID)
- Deriving meaning from PCR state
 - Must reconstruct hash from event log
 - Map hash values to known software
 - No authoritative source for mapping

Implementation & Community

Intel implementing TCG TSS as Open Source

- Project hosted under '01.org' on Github
 - https://github.com/01org/tpm2.0-tss
 - https://github.com/01org/tpm2.0-tools
- 3-clause BSD == maximum flexibility
- Development on GitHub "in the open"
 - I don't always have the answer, someone else may though
 - Main development on 'master', tagged releases
 - Packages working their way into distros
- Lots of churn in the next few months

Embedded Builds

My personal OSS work

- meta-measured: https://github.com/flihp/meta-measured
 - TPM1.2 & 2.0 packages
 - Reference 'live' images & initrds
 - Grub2 patches extend measured launch (soon obsoleted by upstream!)
 - + BSP for Minnowboard Max to add TPM2 support as MACHINE FEATURE
- Working on ARM reference platform + Infineon SPI TPM
 - Coreboot TPM2 support for chromebooks good starting place?
 - Still some work in TSS code to support big-endian systems (facepalm)

Shout-Outs!

Many thanks for contributions to materials:

- Monty Wiseman @ General Electric
- Lee Willson @ Security Innovation
- Andreas Fuchs @ Fraunhofer SIT
- & Everyone who's contributed code / answered questions on GitHub!
- Bill Roberts @ Intel OTC
- Imran Desai @ Intel IOTG

THANKS!

Resources

Threat Modeling: Designing for Security – Adam Shostack

http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118809998.html

Trusted Platforms UEFI, PI and TCG-based firmware

 https://people.eecs.berkeley.edu/~kubitron/cs194-24/handouts/SF09 EFIS001 UEFI PI TCG White Paper.pdf

Open Security Training Trusted Computing Module:

http://opensecuritytraining.info/IntroToTrustedComputing
Davide Guerri TPM2.0 talk @ FOSDEM

https://fosdem.org/2017/schedule/event/tpm2/

TPM RNG linux howto:

https://scotte.org/2015/07/TPM-for-better-random-entropy

Physical security & implications

- Tamper Resistant
 - Cast it in Epoxy
- Tamper Evident
 - Wrap it in "tamper tape"
- Tamper Responsive
 - Tamper detection mechanisms destroy secrets
- Physical security is \$\$\$
- TPM designed to be cheap to promote adoption

Physical attacks against TPM

Several documented over last ~10 years

- LPC bus intercept / reset attack
 - Dartmouth College Computer Science Technical Report TR2007-597
 - http://www.cs.dartmouth.edu/~pkilab/sparks/
- Bus snooping largely addressed by new encrypted / HMAC sessions
- Chris Tarnovsky Attacking TPM @ Defcon20
 - \$200k in equipment + 6 months
 - https://www.youtube.com/watch?v=h-hohCfo4LA
 - https://www.defcon.org/html/links/dc-archives/dc-20-archive.html

