Agenda

Background
• Security basics
• Terms

TPM basics
• What it is / what it does
• Why this matters / specific features

TPM Software Stack
• Architecture / Design
• Getting Started
• Getting Results
Level Set

There is no magic, there are no silver bullets

- “security” takes the whole village
- Architecture to implementation to maintenance
- There is no such thing as “a secure system”, only secure enough
- YOUR CUSTOMERS define “secure enough”
The Basics

Using the TPM does not make a secure system

- FTC case against ASUS: didn’t take “reasonable steps” to secure its routers
 - Must maintain a comprehensive security program
 - Mirai (nuf said)
- Basics == “reasonable steps”
 - Disable services / exclude tools / minimize exposure (aka attack surface)
 - Use writable storage only when you must
 - SIGNED UPDATES!
- Securing general purpose computers is a nightmare, embedded more tractable
Threat modeling

A process by which we identify, enumerate, prioritize & document

• Assets
• Threats to them
• IMHO the most important part of your security program
• Prioritize: decide where your efforts are best spent
 • Identify trade-offs
• Accurately describe the properties of your system
 • What it protects against: threats mitigated
 • What it does not: threats accepted
• And most importantly: why
If your team doesn't model threats ...

Please do?

• Much of the body of knowledge was developed in Microsoft
• MSDN has lots of free content
• OWASP Application Threat Modeling
 • https://www.owasp.org/index.php/Application_Threat_Modeling
• Adam Shostack’s book was my introduction (2014)
Terms

Classic security concepts:

• Confidentiality
• Integrity
• Authentication
• Authorization (satisfy TPM2 policy)
• Non-repudiation

Use the TPM2 to build systems that implement these principles
TPM Protections

Documented in TPM Rev 2.0 Part-1: Architecture

- Frames protections offered by TPM2 in section 10:
 - Shielded Location
 - Protected Capability
 - Protected Object
- TPM operations must be correct, sensitive data must be protected
- TPM severely memory constrained
 - offload storage to applications, encrypt all protected objects when not in shielded location
- Nature of physical security protections dictated by customer / requirements
What is a TPM?

Small Crypto Engine
- Cryptographic functions
- Hashing functions
- Key generation & protection
- RNG
- Integrity measurement / reporting

Random # Generation
Key Generation
Power Mgmt
Execution Engine
Non-Volatile Memory
 - Hierarchy Seeds
 - Monotonic Counters
 - Storage

I/O
Authorization
Mgmt Operations
Symmetric Engine(s)
Hash Engine(s)
Asymmetric Engine(s)
Volatile Memory
 - PCR banks
 - Transient Objects
 - Sessions

Power Mgmt
TPM2 Implementation: domain separation

Discrete IP Block (a chip)

- Shielded Location
- ...
- ...
- I/O

Protected Capability

I/O

Integrated IP Block

- Shielded Location
- ...
- ...
- I/O

Protected Capability

I/O

IP block

OS

Apps

Integrated IP Block

I/O

IP block
Integrity: Measured Boot

Platform Configuration Register (PCR) & the “Extend” operation

• Typically 24 PCRs in a TPM, addressed with index: PCR[0] – PCR[23]
• PCR is a Shielded Location, Extend operation is Protected Capability
• PCR usage (store hashes of which components) defined in TCG platform specs
• Software Measurement is synonymous with the hash produced
 • Extend hash of object (executable, config etc) into PCR
 • Extend: $\text{PCR}[0]_N = H(\text{PCR}[0]_{N-1} \mid X)$
• PCR state becomes one way function depending on previous state
• Computationally infeasible to forge, easy to verify
Integrity: Measured Boot

- RTM
- Platform Firmware
- Option ROMs
- Boot Loader
- OS
- App

PCR[0]: 0x....
PCR[1]: 0x....
PCR[23]: 0x....
TCG TPM2 Software Stack: design goals

System API (SYS)
- 1:1 mapping to TPM2 commands
- No
 - file IO
 - crypto
 - heap
 - external library dependency

Enhanced SAPI (ESYS)
- 1:1 mapping to TPM2 Commands
- Additional commands for utility functions
- Provides Cryptographic functions for sessions
- No file IO
- Requires heap

Feature API (FAPI)
- File IO
- Requires heap
- Must be able to do retries
- Context based state
- Must support the possibility of reduced application code size by offering static libraries

TPM Command Transmission Interface (TCTI)
- Abstract command / response mechanism
- Decouple APIs driving TPM from command transport / IPC
- No crypto
- No heap, file I/O

TPM Access Broker and Resource Manager (TABRM)
- Power management
- Potentially no file IO – depends on power mgmt.
- Abstract Limitations of TPM Storage
- No crypto
TPM2 software stack

System API & TCTI specification

- **TPM2 Command Transmission Interface (TCTI)**
 - Abstraction to hide details of IPC mechanism
 - libtcti-device & libtcti-socket
 - Adds flexibility missing from 1.2 TSS

- **System API (SAPI)**
 - Serialize C structures to TPM command buffers
 - One-to-one mapping to TPM commands (all 100+)
 - Minimal external dependencies: libc
 - Suitable for highly embedded applications / UEFI
TPM2 TSS Components: w/ resourcemgr
Use case: RNG

TPM requires RNG for key creation, nonce generation.

• an entropy source and collector
• state register
• mixing function (typically, an approved hash function)
• Differentiation between TPMs w/ certification (NIST SP800-90 A)
• TPM RNG integrated with Linux kernel RNG
 • If you need an entropy source DO NOT use TPM RNG alone
 • Load the ‘tpm_rng’ kernel driver & setup rng-tools
 • Use /dev/(u)?random
Use case: Sealed Storage aka Local Attestation

Use TPM2 policy authentication as access control on TPM protected object

- Microsoft Bitlocker uses this mechanism for disk crypto keys
- OpenXT virtualization system uses similar mechanism
- Assumes measured boot records TCB in PCRs: software identity
 - Create TPM object holding auth data for disk crypto
 - Bind object to PCR policy: select PCRs based on TCB & requirements
 - On successful boot w/ PCRs in expected state, load object
 - Can be used to hold secrets for LUKS volumes
Use case: Attestation (1)

The presentation of verifiable evidence of software state to a remote party

• Software identity stored in PCRs: depends on correct measured boot!
• TPM Quote command produces signed report of PCR state
 • Can include arbitrary user data in quote (don’t mix in Nonce!)
 • Signed using purpose specific key: attestation identity key
• Verifier challenges attester
 • Provides nonce (freshness)
 • Combined with hash of requested / negotiated PCRs in signed quote
Use case: Attestation (2)

Attestations are simple cryptographic operations over data (sign)

- “the Devil is in the details”
- Association between AIK & EK links AIK to platform
 - “privacy CA” as trusted 3rd party to protect anonymity of AIK
 - Enhanced Privacy ID (EPID)
- Deriving meaning from PCR state
 - Must reconstruct hash from event log
 - Map hash values to known software
 - No authoritative source for mapping
Implementation & Community

Intel implementing TCG TSS as Open Source

- Project hosted under ’01.org’ on Github
 - https://github.com/01org/tpm2.0-tss
 - https://github.com/01org/tpm2.0-tools
- 3-clause BSD == maximum flexibility
- Development on GitHub “in the open”
 - I don’t always have the answer, someone else may though
 - Main development on ‘master’, tagged releases
 - Packages working their way into distros
- Lots of churn in the next few months
Embedded Builds

My personal OSS work

• meta-measured: https://github.com/flihp/meta-measured
 • TPM1.2 & 2.0 packages
 • Reference ‘live’ images & initrds
 • Grub2 patches extend measured launch (soon obsoleted by upstream!)
 • + BSP for Minnowboard Max to add TPM2 support as MACHINE_FEATURE
• Working on ARM reference platform + Infineon SPI TPM
 • Coreboot TPM2 support for chromebooks good starting place?
 • Still some work in TSS code to support big-endian systems (facepalm)
Shout-Outs!

Many thanks for contributions to materials:

- Monty Wiseman @ General Electric
- Lee Willson @ Security Innovation
- Andreas Fuchs @ Fraunhofer SIT

& Everyone who’s contributed code / answered questions on GitHub!

- Bill Roberts @ Intel OTC
- Imran Desai @ Intel IOTG
THANKS!
Resources

Threat Modeling: Designing for Security – Adam Shostack

Trusted Platforms UEFI, PI and TCG-based firmware
• https://people.eecs.berkeley.edu/~kubitron/cs194-24/handouts/SF09_EFIS001_UEFI_PI_TCG_White_Paper.pdf

Open Security Training Trusted Computing Module:
• http://opensecuritytraining.info/IntroToTrustedComputing

Davide Guerri TPM2.0 talk @ FOSDEM
• https://fosdem.org/2017/schedule/event/tpm2/

TPM RNG linux howto:
• https://scotte.org/2015/07/TPM-for-better-random-entropy
Physical security & implications

• Tamper Resistant
 • Cast it in Epoxy

• Tamper Evident
 • Wrap it in “tamper tape”

• Tamper Responsive
 • Tamper detection mechanisms destroy secrets

• Physical security is $$$

• TPM designed to be cheap to promote adoption
Physical attacks against TPM

Several documented over last ~10 years

- LPC bus intercept / reset attack
 - http://www.cs.dartmouth.edu/~pkilab/sparks/
- Bus snooping largely addressed by new encrypted / HMAC sessions
- Chris Tarnovsky - Attacking TPM @ Defcon20
 - $200k in equipment + 6 months
 - https://www.youtube.com/watch?v=h-hohCfo4LA