
Leveraging the Ecosystem

Extending Linux with
Arduinos

Mike Anderson
Chief Scientist

The PTR Group, Inc.

http://www.theptrgroup.com

ELC-SClara-0428-2 Copyright 2014, The PTR Group, Inc.

What We Will Talk

What is an Arduino?

Development model

Why Linux comes up short

Extending Linux with external Cs
Connectivity options

Summary

ELC-SClara-0428-3 Copyright 2014, The PTR Group, Inc.

What is an Arduino?

Arduino is an open-source SBC based on the Atmel AVR
microcontroller line
The Arduino family uses the Atmel ATmega
processor line

Purchased from Nordic Semiconductor

Using the AVR is like a trip back to the late 1970s
8-bit processor with very limited address space

Fortunately, the architecture is optimized to execute a HOL like
C/C++

32 8-bit registers
About 1 MIPs/MHz

Most processors are either 8MHz or 16MHz
The goal of the Arduino project was to enable non-technical users

in the form of sensors and actuators
Originally conceived as a means to create interesting designs and art

ELC-SClara-0428-4 Copyright 2014, The PTR Group, Inc.

Arduino in the Marketplace

Arduinos are cheap and ubiquitous
They range from $8 to as much as $120 depending
on options installed

Arduinos are available from multiple sources
including:

RadioShack, Frys,
MicroCenter, SparkFun
and many others

Applications ranging
from simple LED art to
fully autonomous
multi-rotor sensing and
camera platforms with GPS
There is estimated to be over 1,000,000 Arduino
and clones in use today

ELC-SClara-0428-5 Copyright 2014, The PTR Group, Inc.

The Arduino Project

Ivrea, Italy is the home town of Olivetti
Essentially, the Italian version of IBM

Started in 2005 at the Interaction Design Institute Ivrea in Ivrea,

Arduino is an open-source electronics prototyping platform based on
flexible, easy-to-use hardware and software. It's intended for artists,
designers, hobbyists, and anyone interested in creating interactive
objects or environments.

Barragan as part of his thesis work at Ivrea

Uno, Diecimila, Duemilanove, Mega2560, etc.

However, there are a number of commercially available clones
Freeduino, Seeeduino, Boarduino, Netduino, etc.

Most Arduinos use the megaAVR series of chips
ATmega8, ATmega168, ATmega328, ATmega1280 or ATmega2560

These have varying amounts of RAM, Flash and I/O

Arduino Due uses ARM Cortex M3 (Atmel SAM3x)

ELC-SClara-0428-6 Copyright 2014, The PTR Group, Inc.

Example Arduinos/Clones

ELC-SClara-0428-7 Copyright 2014, The PTR Group, Inc.

Memory by Processor Type

This chart shows how much storage you
have:

There are special commands for reading/
writing the EEPROM to use as persistent
storage of static data such as display strings

ELC-SClara-0428-8 Copyright 2014, The PTR Group, Inc.

Overview of I/O Capabilities

The major variants:
ATmega328 (Uno)

14 DIO (4 with PWM)
6 analog inputs
2 external interrupt lines
1 UART (simple 3 wire)
2 8-bit, 1 16-bit timer
JTAG

ATmega2560 (Mega2560/ADK)
54 DIO (14 with PWM)
16 analog inputs
6 external interrupt lines
4 UARTS (simple 3 wire)
2 8-bit, 4 16-bit timers
JTAG

Most Arduinos implement a USB to Serial interface for the UART
Used to program the Flash as well as for serial I/O

Support for I2C, SPI, TWI, UART, A/D, D/A, PWM and GPIOs are all built into
the easy-to-use libraries
There is support for Ethernet via the Wiznet 10/100 Mbps W5100 interface
(SPI)
Wi-Fi, Zigbee and Bluetooth are supported too as is the 423 MHz ISM band

RF ranges can be > 2 miles in the lower RF bands

ELC-SClara-0428-9 Copyright 2014, The PTR Group, Inc.

With the Beaglebone Black, Raspberry Pi, Udoo and others
being so cheap, why does Arduino continue to exist?

Arduinos can cost more than the BBB or RPi

Size and power are part of it
You can buy really tiny Arduino clones
You can run an Arduino for months from
AA batteries

Complexity is a big factor
Just the process of getting Linux to run on BBB or RPi can be
daunting to non-Linux folks

platforms
Arduino programming model is dirt-dumb simple
Large selection of libraries available in source code
I/O expansion selection is mind boggling

The Arduino shield pin-out is almost universal

ELC-SClara-0428-10 Copyright 2014, The PTR Group, Inc.

I/O Shields

A variety of shields are available:

Bluetooth, ZigBee, Ethernet, GPS, protoboard,
relays, MIDI, SD Card, LCD,
motor controllers, joysticks
and many, many more

Over 250 shields at last
count!

Some shields can be
stacked to create complex
systems

ELC-SClara-0428-11 Copyright 2014, The PTR Group, Inc.

The Arduino Boot Cycle

Ranging from .5 to 1KB, the Arduino bootloader is
stored in the Flash

Executed on power-on

All Arduino boards already have this installed but you
can load your own from the IDE

Runs whatever program is stored in Flash
Flash is programmed via JTAG (USB or serial)

The programming model is very simple
No RTOS, just a simple run-time executive and C run
time

No multi-tasking although ISRs are supported
Software interrupts can be simulated using the pin
change feature

ELC-SClara-0428-12 Copyright 2014, The PTR Group, Inc.

The Arduino Development Environment

Just as the hardware is based on the open-source

the open-source Processing Programming Language
Again, targeted at non-professional developers

A Java-based IDE is available for Windows, OS/X and
Linux

Open-source and free to download
http://arduino.cc/en/Main/Software

Implements the basics of syntax highlighting, brace
matching and automatic indentation

The compiler that is included with the IDE is the GNU
avr-gcc compiler
You can also program in AVR assembler

But, that kind of defeats the easily accessible part of the
Arduino

ELC-SClara-0428-13 Copyright 2014, The PTR Group, Inc.

Language Support

The Processing language is a restricted subset of
C/C++

Heavily leverages the use of libraries to accomplish
most operations

Most of C/C++ is supported
This includes classes/constructors/destructors, etc.

Remember, everything must fit into storage!

No PVFs, multiple inheritance, RTTI, etc.
The stuff that eats memory ;-)

int is16-bit but long is 32-bit
float and double are both 4 bytes

Floating point is done in software so consider
converting to fixed point to speed computation

Yes, pointers and dereferences are supported!

ELC-SClara-0428-14 Copyright 2014, The PTR Group, Inc.

Example Arduino IDE

ELC-SClara-0428-15 Copyright 2014, The PTR Group, Inc.

Example Sketch

/*

 Blink

 Turns on an LED on for one second, then off for one second, repeatedly.

 This example code is in the public domain.

 */

void setup() {

 // initialize the digital pin as an output.

 // Pin 13 has an LED connected on most Arduino boards:

 pinMode(13, OUTPUT);

}

void loop() {

 digitalWrite(13, HIGH); // set the LED on

 delay(1000); // wait for a second

 digitalWrite(13, LOW); // set the LED off

 delay(1000); // wait for a second

}

The BoneScript tries to approximate this API

But, still runs Linux natively

ELC-SClara-0428-16 Copyright 2014, The PTR Group, Inc.

A simple ISR

Here is an example that generates an interrupt
every time a rising edge is encountered

void setup(void) {

 attachInterrupt(0, count, RISING); // Captures external
 // interrupt 0

 Serial.begin(9600); // Begin Serial at 9600 bps

 Serial.println(" Initializing, Please wait...");

 }

void count() { // Function called by AttachInterrupt
 // at interrupt at int 0

 siPulseCounter++; // increment the pulse count

 }

ELC-SClara-0428-17 Copyright 2014, The PTR Group, Inc.

The Arduino Pin-Out

ELC-SClara-0428-18 Copyright 2014, The PTR Group, Inc.

Fritzing Diagrams

In order to help non-engineers with wiring
prototypes, the Fritzing Diagram approach
was created

Developed at the University of Applied Sciences
of Potsdam

The software is created in the spirit of
Processing and Arduino and allows a
designer, artist, researcher, or hobbyist to
document their Arduino-based prototype
and create a PCB layout for manufacturing

Includes the ability to create a schematic as well
as the picture of the circuit

ELC-SClara-0428-19 Copyright 2014, The PTR Group, Inc.

Example Fritzing Diagram

ELC-SClara-0428-20 Copyright 2014, The PTR Group, Inc.

Linux/Arduino Boards

ELC-SClara-0428-21 Copyright 2014, The PTR Group, Inc.

Why Extend Linux with Arduinos?

With PREEMPT_RT, Linux has excellent timing characteristics
But, this requires patching the kernel and rebuilding

Beyond the grasp of even typical power users

many real-world applications
E.g., PWM-based motor controllers
This is the default for most Linux distros

x86 may be fast, but one SMI will kill your R-T performance
Offloading hard real-time constraints to external processors
is often the path of least resistance

use
Prototyping real-world I/O using Arduinos is very
straightforward

Hundreds of examples available on the web

ELC-SClara-0428-22 Copyright 2014, The PTR Group, Inc.

Example: I2C in Linux vs. Arduino

ELC-SClara-0428-23 Copyright 2014, The PTR Group, Inc.

Connectivity Options

Since Arduinos support virtually every type
of connectivity found in the typical Linux

Wi-Fi, Ethernet, Bluetooth, I2C, SPI, UART, etc.

My robot from the showcase uses a BBB
talking to an Atmel 328 via I2C

Use the Arduino board for the electrical
interface and as a smart buffer

system performance

ELC-SClara-0428-24 Copyright 2014, The PTR Group, Inc.

Summary

Arduinos are great for quick prototypes
Development environment is easy to use

Lots of examples on the web

Bare-metal approach gives you great
repeatability

Linux can require considerable tweaking to
get to the point that you can meet R-T
deadlines reliably

Combining the two environments give you
the best of both worlds

More and more combination boards are coming
out to keep the parts count and costs down

