
Birds of a Feather Session - ELC Portland 2018

Typical product development process

Prototyping
Production
design

Mass
production

Release
deadline panic

Updater is too often an afterthought

Prototyping
Production
design

Mass
production

Release
deadline panic

Oh no! There
will be bugs in
production!

Updater is too often an afterthought

Prototyping
Production
design

Mass
production

Release
deadline panic

This is where you
should design for
OTA updates.

Homegrown updater #1: The bricker
● Developed in a hurry, not well tested

● Typically user-space shell scripts,
e.g. using ipkg/rpm or application
“self update”

● Lacks update compatibility checks

● No sanity checking / rollback

● Does not meet robustness &
atomicity requirements for
embedded

● If the device loses power during
update process it is likely bricked

Homegrown updater #2: The honeypot

● Developed without sufficient skills
of security

● Gets updates over plaintext protocols
or misuses crypto

● Lacks update signing / encryption

● Makes it trivial for (wireless)
attacker to “pwn” the devices; install
any malware on them

Homegrown updater #3: The needy

● Lacks update server; cannot
automated updates across devices

● Manual operation to do 1-on-1
updates to devices, e.g. USB stick or
remote 1-on-1 connection

● Updates become so frustrating and
expensive that it is not used except
during disasters

The embedded environment

● Remote
○ Expensive to reach physically

● Long expected lifetime
○ 5 - 10 years

● Unreliable power
○ Battery
○ Suddenly unplugged

● Unreliable network
○ Intermittent connectivity
○ Low bandwidth
○ Insecure

What can
go wrong?

1. Robust and secure

2. Integrates with existing environments

3. Easy to get started

4. Bandwidth consumption

5. Downtime during update

6. Update server enabling mass updates

Key criteria for embedded updates

Detect update
(secure channel)

Download
(secure channel)

Integrity
(e.g. checksum)

Authenticate
(e.g. signature)

DecryptExtract

Install Failure recovery
(e.g. roll back)

Compatibility
check

Sanity checks
Post-install
actions

Pre-install
actions

Must-have

Environment-specificChoose a
strategy

(re)Start*

*E.g. reboot, restart service, start container

Generic embedded updater workflow

Mender provides integrated client and update server

● Client-server model

○Mender provides both

○Easy integration: No need to “glue”
several projects

○Server can integrate with 3rd party
clients through its REST API

● Dual A/B rootfs partition layout

○Atomic deployments

○Deploy to inactive partition

○Robust update process

● Supports updating

○Kernel, device tree

○ApplicationsApache License v. 2.0

Mender demo!

● Automate U-Boot patching (for rootfs partition selection)
○ Almost done!

● Mender community integrations & free CI service

2018 focus: simplify device integration (1)

● No U-Boot/boot command patching
○ UEFI binary support

● Alternative: “POC mode” vs. production integration

● Binary post-process images to integrate Mender

2018 focus: simplify device integration (2)

● x86

● Debian, Ubuntu, Raspbian

● Buildroot

2018 focus: simplify device integration (3)

● Is simplifying device integration worthwhile? How?

● Other product-related items?

● Areas for community & contributions?

Feedback? What is missing for you?

● Comparing and Contrasting Embedded Linux Build Systems and Distributions
○ Drew Moseley, Mender.io
○ Tuesday 10:50am, Pavilion East

● Update My Board!
○ Mirza Krak, Endian Technologies AB
○ Tuesday 10:50am, Grand Ballroom II

● Mender booth in expo hall
○ Attendee reception Tuesday, 5:10pm - 7pm

● The IoT Botnet Wars, Linux Devices, and the Absence of Basic Security
Hardening
○ Eystein Stenberg, Mender.io
○ Wednesday 3:30pm, Broadway I/II

Join OTA updates sessions

Appendix

Installer strategy 1: run-time installation

● Robustness is hard
○ Atomicity: Hard or impossible
○ Consistency (dev=test): Hard

● Integrates well
○ May already have packages

○ Some userspace tools

● Low bandwidth use (<1mb)

● Short downtime (seconds)

Bootloader

Kernel, initramfs

User space

Updater

● Updater deploys to running
environment

○ Package managers (ipkg, rpm, deb...)
○ OSTree
○ Many homegrown (tar.gz)

Installer strategy 2: boot to maintenance mode

● Robustness is hard
○ Not atomic (can get partial update)
○ Consistent on success (image)

● Integrates fairly well
○ Bootloader features & intelligence

● High bandwidth use*
○ Whole image

● Long downtime
○ Whole image install
○ 2 reboots

Bootloader

Kernel, initramfs

User space

Updater

● Updater deploys “up the stack”
while running in bootloader

○ Used in older Androids (before ‘N’)
○ “Rescue environment” common in

embedded
*Can mitigate: compressed/delta

Installer strategy 3: dual A/B rootfs layout

● Very robust
○ Fully atomic and consistent

● Integrates fairly well
○ OS, kernel, apps unchanged
○ Needs bootloader “flip” support
○ Partition layout, requires 2x rootfs

storage

● High bandwidth use*
○ Whole image

● Fairly short downtime (minute)
○ 1 reboot

Bootloader

Kernel,
initramfs A

User space A

Updater A

● Updater deploys to inactive
partition, then reboots into it

○ Used in newer Androids (‘N’ and later)
○ Common in “mid/high-end” embedded

*Can mitigate: compressed/delta

User space B

Kernel,
initramfs B

Updater B

Installer strategy 4: proxy

● Updater deploys to remote system
○ Used on smaller devices (sensors, ECUs,

etc.), such as in Smart Home or
Automotive

○ Requires intelligent gateway to manage

Gateway

Remote device
(sensor, ECU, etc.)

Updater

● Slightly different scenario
○ Smaller devices (no client)
○ Complements the others

● Suited for closeby installations
only, not internet
○ Robustness (e.g.

connection/power loss)
○ Security

