
X86 ROM Cooking 101

Ron Munitz
Founder & CEO - The PSCG
Founder & CTO - Nubo Software

ron@android-x86.org
https://github.com/ronubo/

The slides will be available online at:
 thepscg.com/talks/2014

ELC/ABS
April 2014

@ronubo

PSCG

https://github.com/ronubo/
https://github.com/ronubo/
http://thepscg.com/talks/2014

This work is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/4.0/

© Copyright Ron Munitz 2014

PSCG

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

 Agenda
● Introduction

○ You, Me, Android
● Introduction to Embedded Systems

○ Embedded Systems
○ Android Partition Layout

● Android X86 projects
○ Virtual Machine discussion
○ The Init sequence
○ Multi Booting

● The Android Build System
○ Building an AOSP ROM from scratch

PSCG

 You, Me, Android

PSCG

 ?

PSCGAbout://Ron Munitz
● Distributed Fault Tolerant Avionic Systems

○ Linux, VxWorks, very esoteric libraries, 0’s and 1’s
● Highly distributed video routers

○ Linux
● Real Time, Embedded, Server bringups

○ Linux, Android , VxWorks, Windows, devices, BSPs, DSPs,...
● Distributed Android

○ Rdroid? Cloudroid? Too busy working to get over the legal naming, so no name
is officially claimed for my open source.

● What currently keeps me busy:
○ Running the PSCG, a Embedded/Android consulting and Training
○ Managing R&D at Nubo Software and advising on Remote Display Protocols
○ Promoting open source with The New Circle expert network
○ Teaching, Researching and Project Advising at Afeka’s college of Engineering
○ Amazing present, endless opportunities. (Wish flying took less time)

PSCG

● 2002 - SideKick by Danger Inc. - The first “Internet Phone”.
○ Technical session at Stanford by Andy Rubin, CEO of Danger Inc.
○ Google’s Brin & Page attend, and soon become Sidekick users.
○ Sidekick fails to achieve commercial success

● 2003 - Andy Rubin forms “Android”, targeted at operating mobile phones
and cameras

● 2005 - Google Acquires “Android”.

● 2007 - The Open Handset Alliance is formed
○ November 5th - The OHA Announces Android, an open source

mobile phone platform based on the linux kernel
○ November 12th - Google Announces the Android SDK, along with a

$10 million Android developer challenge

 Android History (2002-2007)

 PSCG

● 2008 - T-mobile and Google announce the first Android phone - the G1
○ AKA. The HTC “Dream”
○ Approved by the FCC on August 18th 2008
○ First available - October 22nd

● 2009 - Motorola Droid is announced, running Android 2.0
○ Considered by many as the opening note for the smartphone wars.
○ Added at least two exclusive features:

■ Hardware keyboard
■ Replaceable battery

 Android History (2008-2009)

 PSCG

● 2010 was an exciting year for Android:
○ Google Announces its first flagship device - the Nexus One

■ Which is one of the best phones I have ever had.
○ Samsung sets a giant’s foot on the battlefield

■ Galaxy S and its variants hit the market
○ HTC’s EVO4G hits the market

■ Was widely considered as the best iPhone alternative at that time
○ Android’s market share first passes the iPhone’s market share
○ Google announces the Gingerbread (2.3) Android version, debuting

on the Nexus S.
■ Introducing the most popular Android version until the end of 2013
■ Introducing NFC and SIP

 Android History (2010)

 PSCG

● 2011 - Honeycomb (3.0), google’s first aim at the tablet market is out
○ Android’s market share first passes the Blackberry’s market share
○ November 2011 - Ice Scream Sandwich is out, debutting on the

Galaxy Nexus

● 2012 - JellyBean is released
○ Introducing significant enhancement in user experience (Project

butter)
○ Introducing multi user for tablets
○ Samsung confidently ranks as the top Android phone maker on earth

● 2013 - More devices, more market share,
○ Android 4.3 is out: Enhanced WiFi-Display, Open GL ES 3.0,...
○ Android 4.4 (KitKat) is out: First time a commercial brand hits Android,

better memory utilization, enhanced security, in-platform PDF
rendering, enhanced printer support and more...

 Android History (2011 - 2013)

 PSCG

● Foreseeable future:
○ More devices
○ More power
○ More features
○ More apps
○ More developers
○ More competition
○ More embedded Android engineers needed.

● Will Android be crowned as the new Embedded Linux?

 Android History (2014 - The Future)

PSCG

 Platform Versions - Present day distributions

 PSCG

 Historical Exhibit: Android Platform Overview

 PSCG

Introduction to ROM
Cooking

ELC/ABS
April 2014

@ronubo

PSCG

 Agenda
● What is a "ROM"?
● Embedded Systems Primer
● Examples of Android ROMs
● ROMs in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

PSCG

 From Wiktionary, the free Dictionary:

 “ROM”:

● (electronics, computing) read-only memory
● (video games) A software image of read-only memory (as of a game

cartridge) used in emulation
● (medicine) Range of Motion
● (finance) Return on Margin
● (estimating and purchasing) Rough order of magnitude. An informal cost

or price estimate provided for planning and budgeting purposes only,
typically expected to be only 75% accurate

 "ROM" - Definition

 PSCG

From Wikipedia, the free Encyclopedia:
ROM, Rom, or rom is an abbreviation and name that may refer to:
In computers and mathematics (that's us!):
● Read-only memory, a type of storage media that is used in computers

and other electronic devices
● ROM image, a computer file which contains a copy of the data from a

read-only memory chip
● ROM (MUD), a popular MUD codebase
● Random oracle model, a mathematical abstraction used in cryptographic

proofs
● ROM cartridge, a portable form of read-only memory
● RoM, Request of Maintainer (see Software maintainer)
● Rough order of magnitude estimate

 "ROM" - Definition (cont)

 PSCG

As CyanogenMod educates us in their overview of Modding:

“You can flash a ROM onto the ROM,
which isn't really ROM”

 http://wiki.cyanogenmod.com/wiki/Overview_of_Modding

 Terminology check

PSCG

Embedded Build Systems Primer -
A quick detour for the novice

ELC/ABS

April 2014

PSCG

Embedded Build Systems

● In the introduction module we saw a recipe for building
Android using the AOSP Build System.

● The build procedure was done on a designated
machine, which has all the required tools to turn the
○ That machine is referred as The Host

● The host is used to build the system for a designated
device, may it be a handset, an emulator, a streamer
etc.
○ That device is referred to as The Target

PSCG

● In Embedded Software Development, the common
case is that host != target

● They may have the same attributes:
○ architecture (i.e x86, arm, mips…),
○ library versions (libc, libstdc++, …)
○ toolchains (gcc, ar, …)

● But they do not have to, and will usually have little to
nothing in common.

● Hence, the build system uses a cross Toolchain, to
cross compile build artifacts for the target on the
host.

Embedded Build Systems
PSCG

Native and Cross Compiling
$ cat hello.c
#include <stdio.h>
int main()
{

printf("Ciao Mondo\n");
return 0;

}
$ which gcc
/usr/bin/gcc
$ gcc --static -o hello_native hello.c
$./hello_native
Ciao Mondo
$ file hello_native
hello_native: ELF 64-bit LSB executable,
x86-64, version 1 (GNU/Linux), statically
linked, for GNU/Linux 2.6.24, BuildID
[sha1]
=0x60117523776dbf4ff7d4378cce2f184d5
6f1b93c, not stripped

$ cat hello.c
#include <stdio.h>
int main()
{

printf("Ciao Mondo\n");
return 0;

}
$CC=~/tc/bin/arm-linux-androideabi-gcc

$ ${CC} --static -o hello_cross hello.c
$./hello_cross
bash: ./hello_cross: cannot execute binary
file
$ file hello_cross
hello_cross: ELF 32-bit LSB executable,
ARM, version 1 (SYSV), statically linked, not
stripped

Native Compiling Cross Compiling

PSCG

Canadian Cross
This simplified (and very inaccurate) image depicts a technique for building
Cross Compilers, known as the Canadian Cross
*source: http://en.wikipedia.org/wiki/Cross_compiler_

Host
Target Target

Host

PSCG

http://en.wikipedia.org/wiki/Cross_compiler

HOST

Embedded Development Overview

TARGETLinux kernel (3.10.7.3)
GNU toolchain
GNU make (3.81)
Python (2.7.3)-
Shell (bash 4.2.25)
Oracle JDK (1.6.0.34)
Git (1.7.9.5)
repo (1.12.2)
Cross toolchains

Android
Emulator
(X86)

Android
Emulator
(ARM)

Windows
over
VirtualBox

Linux over
VmWare

Android-
X86 over
QEMU

LFS over
UML

BSP
Kernel
Drivers (?)
Userspace (?)
Shell (?)
Graphics (?)
...

 ?

PSCG

HOST

Connecting the host with the target -
The Android way

TARGETLinux kernel (3.10.7.3)
GNU toolchain
GNU make (3.81)
Python (2.7.3)-
Shell (bash 4.2.25)
Oracle JDK (1.6.0.34)
Git (1.7.9.5)
repo (1.12.2)
Cross toolchains

Android
Emulator
(X86)

Android
Emulator
(ARM)

Windows
over
VirtualBox

Linux over
VmWare

Android-
X86 over
QEMU

LFS over
UML

BSP
Kernel
Drivers (?)
Userspace (?)
Shell (?)
Graphics (?)
...

fastboot

 adb

HOST

Embedded Build System - Overview

Operating system
Host toolchains
Cross toolchains
Source control

Android
Emulator
(X86)

Android
Emulator
(ARM)

Windows
over
VirtualBox

Linux over
VmWare

Android-
X86 over
QEMU

LFS over
UML

Build (I) Images (Build Artifacts)
for target (I)

Build (II) Images (Build Artifacts)
for target (II)

PSCG

HOST

Embedded Build System - The
Android way

Linux kernel (3.10.7.3)
GNU toolchain
GNU make (3.81)
Python (2.7.3)-
Shell (bash 4.2.25)
Oracle JDK (1.6.0.34)
Git (1.7.9.5)
repo (1.12.2)
Cross toolchains

Android
Emulator
(X86)

Android
Emulator
(ARM)

Windows
over
VirtualBox

Linux over
VmWare

Android-
X86 over
QEMU

LFS over
UML

lunch (I)
make

out/target/product/(I)/*.img
(system.img, boot.img …)

lunch (II)
make

out/target/product/(II)/*.img
(system.img, boot.img …)

HOST

Flashing build artifacts -
The Android way

TARGET

Android
build
System

Android
Emulator
(X86)

Android
Emulator
(ARM)

Windows
over
VirtualBox

Linux over
VmWare

Android-
X86 over
QEMU

LFS over
UML

BSP
Kernel
Drivers (?)
Userspace (?)
Shell (?)
Graphics (?)
...

*.img:
system,
data,
recovery,
boot
(kernel,
ramdisk)

Build fastboot
flash

PSCG

ROM flashing

● ROM Flashing (simplified) - is the action of transferring
the build system output (a.k.a “Build Artifacts”) onto the
target memory (i.e. flash, EEPROM, Hard drive, RAM,
etc).

● Once the ROM is flashed, and assuming it is functional,
it will be loaded and run when your target is power
cycled / reset.

● It is the responsibility of the Bootloader to have the
target’s CPU fetch, load and execute the ROM contents.

PSCG

Embedded Development Example -
The Android way - Flashing Maguro

● Assuming I would like to build the AOSP for my maguro
device.
○ The Host is My laptop, running Ubuntu 12.04 as its

Operating System.
○ The Target is an Samsung Galaxy Nexus GSM.

■ Before flashing - it is running a stock ROM
■ After flashing - it will be running what I built using the AOSP!

○ The “Flashing” occurs when we:
■ Reboot to fastboot mode
■ Flash the boot.img, system.img etc.

of the build output directory (out/target/product/maguro)

Embedded Development Example -
The Android way - Android Emulator

● In the previous module we built an aosp_x86-eng build
variant of the AOSP.
○ The Host is My laptop, running Ubuntu 12.04 as its

Operating System.
○ The Target is an Android Emulator - running what I

built using the AOSP!
○ The “Flashing” pseudo-occurs when we run the

emulator, and it loads the system.img, userdata-
qemu.img, kernel and cache.img of the build output
directory (out/target/product/generic-x86)

And Back to the Android World!

ELC/ABS

April 2014

PSCG

Traditional terminology – whatever lies on the read-only partitions of the
device's internal flash memory:

● Recovery Mode:
○ Recovery Image (kernel + initrd)

● Operational Mode:
○ Boot Image (kernel + initrd)
○ System Image

● The magical link between the two:
○ Misc

What is not a part of the ROM?

● User data: /data, /cache, /mnt/sdcard/...

 Android ROM components

PSCG

Since Android is Linux at its core, we can examine its
storage layout via common Linux tools:
shell@android:/ $ df

Filesystem Size Used Free Blksize

/dev 487M 32K 487M 4096

/mnt/secure 487M 0K 487M 4096

/mnt/asec 487M 0K 487M 4096

/mnt/obb 487M 0K 487M 4096

/system 639M 464M 174M 4096

/cache 436M 7M 428M 4096

/data 5G 2G 3G 4096

/mnt/shell/emulated 5G 2G 3G 4096

 Android ROM Storage Layout

PSCG

shell@android:/ $ mount
rootfs / rootfs ro,relatime 0 0

tmpfs /dev tmpfs rw,nosuid,relatime,mode=755 0 0

devpts /dev/pts devpts rw,relatime,mode=600 0 0

proc /proc proc rw,relatime 0 0

sysfs /sys sysfs rw,relatime 0 0

debugfs /sys/kernel/debug debugfs rw,relatime 0 0

Output of mount continues in next slide

 Android ROM Storage layout: "Standard Linux"

PSCG

none /acct cgroup rw,relatime,cpuacct 0 0
tmpfs /mnt/secure tmpfs rw,relatime,mode=700 0 0
tmpfs /mnt/asec tmpfs rw,relatime,mode=755,gid=1000 0 0
tmpfs /mnt/obb tmpfs rw,relatime,mode=755,gid=1000 0 0
none /dev/cpuctl cgroup rw,relatime,cpu 0 0
/dev/block/platform/sdhci-tegra.3/by-name/APP /system ext4 ro,relatime,user_xattr,acl,barrier=1,
data=ordered 0 0
/dev/block/platform/sdhci-tegra.3/by-name/CAC /cache ext4 rw,nosuid,nodev,noatime,
errors=panic,user_xattr,acl,barrier=1,nomblk_io_submit,data=ordered,discard 0 0
/dev/block/platform/sdhci-tegra.3/by-name/UDA /data ext4 rw,nosuid,nodev,noatime,errors=panic,
user_xattr,acl,barrier=1,nomblk_io_submit,data=ordered,discard 0 0
/dev/fuse /mnt/shell/emulated fuse rw, nosuid, nodev, relatime,user_id=1023,group_id=1023,
default_permissions,allow_other 0 0

 Android ROM Storage layout: "Standard Android"

 PSCG

shell@android:/ $ cat /proc/partitions

 major minor #blocks name

 179 0 7467008 mmcblk0

 179 1 12288 mmcblk0p1

 179 2 8192 mmcblk0p2

 179 3 665600 mmcblk0p3

 179 4 453632 mmcblk0p4

 179 5 512 mmcblk0p5

 179 6 10240 mmcblk0p6

 179 7 5120 mmcblk0p7

 179 8 512 mmcblk0p8

 179 9 6302720 mmcblk0p9

 Android ROM Storage Layout

PSCG

shell@android:/ $ ls -l /dev/block/platform/sdhci-tegra.3/by-name/
lrwxrwxrwx root root 2013-02-06 03:54 APP -> /dev/block/mmcblk0p3
lrwxrwxrwx root root 2013-02-06 03:54 CAC -> /dev/block/mmcblk0p4
lrwxrwxrwx root root 2013-02-06 03:54 LNX -> /dev/block/mmcblk0p2
lrwxrwxrwx root root 2013-02-06 03:54 MDA -> /dev/block/mmcblk0p8
lrwxrwxrwx root root 2013-02-06 03:54 MSC -> /dev/block/mmcblk0p5
lrwxrwxrwx root root 2013-02-06 03:54 PER -> /dev/block/mmcblk0p7
lrwxrwxrwx root root 2013-02-06 03:54 SOS -> /dev/block/mmcblk0p1
lrwxrwxrwx root root 2013-02-06 03:54 UDA -> /dev/block/mmcblk0p9
lrwxrwxrwx root root 2013-02-06 03:54 USP -> /dev/block/mmcblk0p6

Legend: APP is system, SOS is recovery, UDA is for data...

 So, where is my stuff?!

 PSCG

For a couple of reasons:
● Backup
● Recovery
● Software updates
● Error checking
● Board design
● Curiosity
● ...

 Why should we care about it?

PSCG

● “Semi-Open source”
● Maintained by Google
● Contributions accepted using “gerrit”
● Mostly Apache licensed
● Provides templates for building an Android system, including

bootloaders etc.
● Vendors derive their products for their hardware layout (BSP,

binaries, etc.)
● Provides the complete source code (but usually missing proprietary

binaries) for a bunch of supported devices (e.g. Galaxy Nexus,
Nexus 4/7/10, Android Emulator)

 Android Open Source Project

 PSCG

● In a single line:
○ just do whatever they say in http://source.android.com

● In a bit more:
○ Set up a 64bit Linux development machine. Officially Supported:

■ Ubuntu 10.04 LTS (Lucid) for versions < JB 4.2.1
■ Ubuntu 12.04 LTS (Precise Pangolin) for versions >= JB 4.2.1

○ mkdir / cd / repo init / repo sync
○ .build/envsetup.sh
○ lunch <Your Config>
○ make # This will take a while... Make some coffee || Get` a good nap.
○ flash/boot/run/pray/debug/show off at xda-developers et al.

 AOSP ROM building

 PSCG

http://source.android.com

● When flashing to devices – make sure the bootloader is unlocked. For
“Google phones”:
○ adb reboot-bootloader
○ fastboot oem unlock
○ Confirm on device

Then you can flash all images using “fastboot -w flashall”,
or particular images using “fastboot flash -w <partition> <image>”

● Some tips on flashing custom builds:
○ Having trouble using “fastboot flash” due to mismatched broadband versions?
○ Try modifying device/<vendor>/<product>/board-info.txt
○ Before building, make sure you have the “binary-blobs”, under the vendor/

subtree (note the difference from device/)
■ Hint: proprietary-blobs.txt

 A bit more about flashing

 PSCG

● Get a kernel to start from – or make one
○ 3.4+ kernel are pretty much “Android-Ready”

● Checkout/config/make
○ Don't get too freaky – avoid breaking “Userspace” (a.k.a

“Android”)
● Replace prebuilt kernel with your generated bzImage
● Rebuild Android
● Pray/play/laugh/cry/show off on XDA-dev/Q&A on

android-kernel / android-porting / android-*

 Building kernels

PSCG

$ git clone https://android.googlesource.com/kernel/<target>.git

Some kernel targets hosted by the AOSP:

● Common - common kernel tree. Based on Linux 3.4+

● msm – Qualcomm msm (HTC Nexus One, LG Nexus 4)

● Omap – TI's OMAP (Samsung Galaxy Nexus)

● Tegra – Nvidia's Tegra (Motorola Xoom, Asus Nexus 7)

● Exynos - Samsung Exynos (Samsung Nexus 10)

● Goldfish - Android emulator

 Getting Kernel Sources

PSCG

● Before we get our hands “dirty”, there is something

I want you to know.

● That something is how things were done for most of the

Android project lifetime.

● More precisely up until Android 4.2.

● Feel free to stick to your chairs and “enjoy” some historic

moments in the Museo di Android Internals

 A blast from the (not so far) past

PSCG

● The Goldfish Kernel Version has traditionally been
2.6.29.
○ Even 4 years after the kernel.org release.
○ Until Android 4.2, where it was upgraded by default to 3.4

● A nice thing about Android – system and kernel are
reasonably decoupled

● “It's just an emulator” - and most of its consumers are
only interested in testing applications, so “don't fix it if it
ain't broken”

● And trying to fix something that is not broken in the
Goldfish case is extremely time consuming.
○ Ask the kernel maintainers who added extremely broken code to the

staging area at late 2013 (too bad I stopped following LKML…)

 Goldfish Kernels

 PSCG

● This is a serious topic.
○ So serious I won’t get into it. Seriously.

● So to make a (very) long story short:
○ It can be argued that Android kernels were not well accepted. To say

the least.
○ This caused an unpleasant fragementation.
○ Yet Android prevailed ⇒ Staging Area.

● You can basically build Android from the vanilla kernel.
org. You can do it without a single patch actually for a
virtual machine!

● Goldfish is a different (harder) topic.
○ Talk to me if you need a .../3.11+/3.12+/3.13+ goldfish porting.

TIP: ${ANDROID_BUILD_TOP}/external/qemu/distrib/build-kernel.sh

 Vanilla (kernel.org) kernels

 PSCG

● This is a serious topic.
○ So serious I won’t get into it. Seriously.

● Fortunately I don’t have to
○ In order to get you running on your favorite VESA

configuration
○ *Graphic acceleration is not only serious, but also a

painful point, which we will not discuss.
● Grasping the concept is a bit easier on Virtual Machines

for a starter, so let’s have a quick look at such.
 * Graphic Acceleration is always a mess with virtual machines,
 so no surprise in here.

 Vanilla (kernel.org) kernels

 PSCG

Guidelines to follow:
● Select your architecture (32/64bits, X86/arm/…, etc.)
● Enable staging area (CONFIG_STAGING=y)
● Search for ANDROID - and enable all configs

○ Some are unnecessary, but it’s a good start
● Enable VIRTIO drivers

○ CONFIG_VIRTIO, CONFIG_VIRTIO_BLK, CONFIG_VIRTIO_PCI,
CONFIG_VIRTIO_NET,...

● Enable FB configurations
○ CONFIG_FB, CONFIG_FB_VESA, ...

● Use the right command line when running qemu
● And don’t forget qemu=1 on the cmdline!

 make ARCH=x86 qemu_vanilla_config

 PSCG

Mount points on standard Goldfish 2.6.29 kernel:
mount
rootfs / rootfs ro 0 0
tmpfs /dev tmpfs rw,nosuid,mode=755 0 0
devpts /dev/pts devpts rw,mode=600 0 0
proc /proc proc rw 0 0
sysfs /sys sysfs rw 0 0
tmpfs /mnt/asec tmpfs rw,mode=755,gid=1000 0 0
tmpfs /mnt/obb tmpfs rw,mode=755,gid=1000 0 0
/dev/block/mtdblock0 /system yaffs2 ro 0 0
/dev/block/mtdblock1 /data yaffs2 rw,nosuid,nodev 0 0
/dev/block/mtdblock2 /cache yaffs2 rw,nosuid,nodev 0 0
cat /proc/mtd
dev: size erasesize name
mtd0: 0b460000 00020000 "system"
mtd1: 04000000 00020000 "userdata"
mtd2: 04000000 00020000 "cache"
#Note: Yaffs2 is obsolete. On ICS and JB devices /system is mounted as ext4.

 Android emulator storage (Goldfish kernel, “old” JB)

 PSCG

 Android emulator storage (Goldfish kernel, Kit-Kat)

 PSCG

 Android emulator storage (Custom vanilla kernel)

 PSCG

 AOSP case study: Building a Jelly Bean emulator

PSCG

This is an image based on one of the earliest
JB versions. Not much, if any has changed
since the very early days of “Cupcake” and
“Donut”.

● First and foremost: Build for X86 and use KVM!
○ Check capability with “kvm-ok”
○ Feature must be enabled in your computer's bios
○ cat /proc/cpuinfo and search for vmx/avm(intel VT/AMD-V)

● Use hardware keyboard
● Much more comfortable then “touching” the soft keyboard
● Although there are uses for that
● Enable keyboard in external/qemu/android/avd/hardware-

properties.ini – and rebuild external/qemu
● Windows users: Use HAXM (Intel's HW Acceleration Manager)

 Using the Android Emulator

 PSCG

● There are more emulation configurations which are supposed to be
supported by AOSP, but tend to be broken
○ Building for non Linux devices from Linux

■ lunch sdk-eng && make win_sdk

○ Building for VirtualBox and other virtual machines:

■ lunch vbox_x86-eng

■ make android_disk_vdi

■ Translate VDI image to your VM hard-drive format (e.g. qcow...)

● Motivation for using such configurations:
Development teams working with different Operating Systems,
but willing to use the same emulated platform

 Additional X86 AOSP configurations

 PSCG

● Motivation - fast linux bringup procedure
○ First, bring-up the target OS on a virtual machine
○ Verify basic functionality
○ Then adjust for a designated hardware

● How to do it?
○ Short answer - use emulator images with some adjustments, mount

ext4, set sdcard etc...
○ Pragmatic answer: In the next session

 Adjusting AOSP build for KVM / QEMU (a teaser)

PSCG

The short answer would be – whenever you can.
○ Great for application development

■ when used with KVM/HAXM
○ Has no dependency on a particular hardware
○ Very easy to build
○ Integrates well with the AOSP tools
○ Relatively well documented

Overall – it is a good ROM.
 Most used ROM for a reason.

 When to use the emulator

PSCG

 Running the Android Emulator on Windows

PSCG

Various forks to the Android Open Source Project:

● AOSP - (4.4+ OPENMASTER/KVT49L upstream)
○ The root of all (good?)

● Android-X86 (KOT49H upstream, JLS36I last stable release)
● Android-IA (JDQ39 upstream)
● Many other forks

○ CyanogenMod
○ Buildroid/AndroVM
○ And many others... Not all are known or Open-Sourced

 Android Projects

PSCG

A custom, open source distribution spawned off
the AOSP
● Provides optimizations and support for over 40

different devices, along with binaries
● Builds routine similar to AOSP (note: “brunch”)
● http://wiki.cyanogenmod.com/wiki/Main_Page

 CyanogenMod (special guest star)

PSCG

Android, X86, Google,
Intel and Android-X86

ELC/ABS
April 2014

@ronubo

PSCG

X86 ROMs (by chronological order):
● Android-X86 (Debut date: 2009)

○ http://android-x86.org
● Emulator-x86 (Debut date: 2011)

○ http://source.android.com
● Android-IA (Debut date: 2012)

○ https://01.org/android-ia

 Android and X86

PSCG

The common reference, having the most recent version of the Android platform
(Userspace) versions.
Provides the QEMU based Android Emulator:
 + Works on any hosted OS
 + Supports multiple architectures

 - But slow on non X86 ones
 - Performs terribly if virtualized
 - Has no installer for X86 devices
 - Very old kernel
 +/- An emulator. For better and for worse.

 AOSP

PSCG

+ Developed by the open source community

+ Developer/Linux user friendly

+ Multi-Boot friendly

+ Generally supports many Intel and AMD devices

+/- But of course requires specific work on specific HW

+ VM friendly

+ Mature, Recognized and stable

 - Delays in new releases (You can help!)
 - Latest version (4.4) is still very buggy, but it’s been out only for a week

 +/- Latest stable version (4.3) still needs some work for some devices
 + The ICS 4.0.4 release is amazing - including running ARM apps

 Android-X86

 PSCG

+ Installer to device

+ Relatively new versions of android and kernel
+ Works great on ivy-bridge devices
+ Integrated Ethernet Configuration Management
- Development for devices based on intel solutions only
- Very unfriendly to other OS's
- Not developer friendly – unless they make it such
- Community work can be better. But it is seems to be getting better
- Intel phones are not based on it (at the moment)
+ Made impressive progress in early 2013
- But suspended development at Android 4.2.2
+ Project resumption at Kit-Kat?, a bit late, but so far looks good (April 2014)

 Android-IA

 PSCG

● Android is Linux
○ Therefore the required minimum to run it would be:

■ A Kernel
■ A filesystem
■ A ramdisk/initrd... Whatever makes you happy with your kernel's

init/main.c's run_init_process() calls.
See http://lxr.linux.no/linux+v3.6.9/init/main.c

○ This means that we can achieve full functionality with
■ A kernel (+ramdisk)
■ A rootfs where Android system/ will be mounted (ROM)
■ Some place to read/write data

 Android is Linux

 PSCG

 Android-IA is Android

Android-IA is, of course, Linux as well.
However, it was designed to conform to Android OEM's partition layout, and
has no less than 9 partitions:

○ boot - flashed boot.img (kernel+ramdisk.img)
○ recovery - Recovery image
○ misc - shared storage between boot and recovery
○ system - flashed system.img - contents of the System partition
○ cache - cache partition
○ data - data partition
○ install - Installation definition
○ bootloader - A vfat partition containing android syslinux bootloader (<4.2.2)

 - A GPT partition containing gummiboot (Only option in 4.2.2)
○ fastboot - fastboot protocol (flashed droidboot.img)

Note: On android-ia-4.2.2-r1, the bootable live.img works with a single partition,
enforcing EFI. It still has its issues - but it is getting there.

PSCG

● One partition with two directories

○ First directory – grub (bootloader)

○ Second directory – files of android (SRC)

■ kernel

■ initrd.img

■ ramdisk.img

○ system

○ data

● This simple structure makes it very easy to work and debug

 Note: Also comes with a live CD/installer. Very convenient.

 Android-X86 is Linux

PSCG

● Start bootloader
● The bootloader starts the combined kernel + ramdisk

image (boot.img flashed to /boot)
● At the end of kernel initialization Android's
● /init runs from ramdisk
● File systems are mounted the Android way – using

fstab.common that is processed (mount_all command)
from in init.<target>.rc

 Android-IA boot process

PSCG

● Start bootloader (GRUB)
● bootloader starts kernel + initrd (minimal linux) + kernel

command line
● At the end of kernel initialization

○ run the /init script from initrd.img
○ load some modules, etc.
○ At the end change root to the Android file system

● Run the /init binary from ramdisk.img
○ Which parses init.rc, and starts talking “Android-ish”

 Android-X86 boot process

 PSCG

It depends what you need:
○ Developer options?
○ Debugging the init process?
○ Support for Hardware?
○ Support for OTA?
○ Licensing?
○ Participating in project direction?
○ Upstream features?
○ ...

There is no Black and White.

 Which one is better?

PSCG

● Use Android-X86 installer system
● And put your desired android files (matching

kernel/ramdisk/system) in the same partition.
● Use the Android-X86 chroot mechanism

○ Critics: Does redundant stuff
○ But that's just a hack anyway – devise specific solutions for

specific problems
● This way, we can multiboot various projects:

○ Android-IA
○ AOSP
○ Any other OS...

Note: You can also use chroot mechanism on any Linux Distribution,
from userspace! But this is significantly harder...

 An hybrid approach

PSCG

Repartition existing Linux partition (Don't do that...)
Install Android-X86
Add entries to GRUB
Reboot to Android-X86 debug mode
Copy Android-IA files from a pendrive or over SCP

For the former: cp /mnt/USB/A-IA/ /mnt && sync
/mnt is the root of Android-X86 installed partition
(e.g. (hd0,1)/...

Update GRUB entries and update GRUB
Voila :-)
Less simplified procedure: Debug GRUB... :-(
** Note: Replace Android-IA with AOSP to boot AOSP built files (system.img /
kernel / ramdisk.img) on your target device.

 Multi-boot recipe with legacy GRUB (simplified)

 PSCG

● Repartition existing Linux partition (Don't do that...)
● Create a mount point for your multi-booting android

○ Can make a partition per distribution, it doesn't really matter.
○ For this example let's assume all Android distributions will co exist on the same

partition, and that it is mounted to /media/Android-x86
● Build your images

○ AOSP: Discussed before
○ Android-x86:

■ . build/envsetup.sh && lunch android_x86-<variant> \
&& make iso_img

○ Android-IA:
■ . build/envsetup.sh && lunch core_mesa-<variant> \

 && make allimages
■ . build/envsetup.sh && lunch bigcore-<variant> && make allimages

** <variant> is either one of the following: user, userdebug, eng

 Multi-boot recipe using GRUB2

 PSCG

● Create directories for your projects (e.g. jb-x86, A-IA, AOSP) under your
mount point (e.g. /media/Android-x86)

● From Android-X86's out/product/target: Copy initrd.img to all projects.
○ Can of course only copy ramdisk to one location.

● From all projects – copy kernel, ramdisk.img, system/ and data/ to to
the corresponding directory under your mount point.

● Add entries to GRUB and update grub.
● # e.g. sudo vi /etc/grub.d/40_custom && update-grub

 Multi-boot recipe using GRUB2 (cont.)

 PSCG

$ df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda5 451656948 394848292 34199920 93% /

udev 1954628 4 1954624 1% /dev

tmpfs 785388 1072 784316 1% /run

none 5120 0 5120 0% /run/lock

none 1963460 2628 1960832 1% /run/shm

/dev/sda1 15481360 5165416 9529464 36% /media/Android-
x86

 Multi-boot recipe with GRUB2 - A numerical example

PSCG

JB-X86
menuentry 'jb-x86' --class ubuntu --class gnu-linux --class gnu --class os {
recordfail
insmod gzio
insmod part_msdos
insmod ext2
set root='(hd0,msdos1)'
echo 'Loading Android-X86'
linux /jb-x86/kernel quiet androidboot.hardware=android_x86 video=-16 SRC=/jb-x86
initrd /jb-x86/initrd.img
}

 A numerical example (cont.)- /etc/grub.d/40_custom

PSCG

android-IA

menuentry 'Android-IA' --class ubuntu --class gnu-linux --class gnu --class os {

recordfail

insmod gzio

insmod part_msdos

insmod ext2

set root='(hd0,msdos1)'

echo 'Loading Android-IA'

linux /A-IA/kernel console=ttyS0 pci=noearly console=tty0 loglevel=8 androidboot.hardware=ivb
SRC=/A-IA

initrd /A-IA/initrd.img

}

 A numerical example (cont.) - /etc/grub.d/40_custom

PSCG

● In this session:
○ We have listed various ways to build ROMs for

■ AOSP devices
■ AOSP emulator(-X86)
■ Android-X86
■ Android-IA

○ We have also discussed multi booting several configurations using the
Android-X86 build system

● In the next module, we will:
○ Explore the Android build system
○ See how to create and modify those projects for easy customizable

X86 developer friendly targets!

 Coming up next...

PSCG

Building Our First
Customized Device

https://github.com/ronubo/

ELC/ABS
April 2014

@ronubo

PSCG

https://github.com/ronubo/
https://github.com/ronubo/

● The build/ folder
● The device/ folder
● Adding a new device
● QEMU challenges

○ kernel
○ network
○ graphics
○ sdcard

● No slides! (pay attention!)

 Outline

PSCG

● Android build system sometimes varies between
versions

● Different Android build systems may have their nuances
● Android runtime varies between versions
● Binary blobs may, or may not be available
● Building takes time. Being “smart” may take more time

due to Dexopt.
● OS/QEMU optimal combination varies.
● Initial bringup may be challenging

 Challenges

PSCG

● The AOSP is hosted at http://source.android.com
● The Android-x86.org project is hosted at http://Android-X86.org
● The Android-IA project is hosted at https://01.org/android-ia
● Device trees shown in the next session are available at

https://github.com/ronubo/AnDevCon
● Introduction to Embedded Android course - Ron Munitz.

Taught at Afeka College of Engineering, Tel-Aviv, Israel
● You are welcome to contact me in the social networks (@ronubo)

 References

 PSCG

http://source.android.com
http://android-x86.org
https://01.org/android-ia
https://github.com/ronubo/AnDevCon
https://github.com/ronubo/AnDevCon

Thank You!

ELC/ABS
April 2014

PSCG

Questions/Consulting/Training requests:
 ron@thepscg.com

https://twitter.com/ronubo
http://www.linkedin.com/in/ronmunitz
https://google.com/+RonMunitz

