
Embedded Linux Conference Europe, October 2019

Offloading Network
Traffic Classification
Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/19

 



Maxime Chevallier

I Linux kernel engineer at Bootlin.
I Linux kernel and driver development, system integration, boot time optimization,

consulting. . .
I Embedded Linux, Linux driver development, Yocto Project & OpenEmbedded and

Buildroot training, with materials freely available under a Creative Commons license.
I https://bootlin.com

I Contributions:
I Worked on network (MAC, PHY, switch) engines.
I Contributed to the Marvell EBU SoCs upstream support.
I Also worked on SPI and real-time topics.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/19

 

https://bootlin.com


Preamble - goals

I Discover the classification operations in the kernel.
I Discover the hardware technologies used to offload packet classification
I Learn about the use cases for classification
I Based on PPv2’s behaviour and design, similar on other NICs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/19

 



Embedded Linux Conference Europe, October 2019

Introduction to Ingress
Classification
Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/19

 



Packet path from the hardware to userspace

1. A frame arrives to the PHY

2. It is transferred to the MAC

3. The MAC performs offloaded operations
4. The packet is copied to RAM via DMA

5. The MAC raises an interrupt

PHY

Memory

MAC

Kernel

Userspace

SoC

CPU

irq

DMA

xMII

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/19

 



MAC

I Upon receiving a frame, the packet goes through a Packet Processor
I The MAC receives the frames and places them into a buffer using DMA
I Descriptors for that buffer are placed into a receive queue
I Once the frame is received, the MAC raises an interrupt
I Receive queues can have dedicated interrupts, pinned to CPUs

rxq0 rxq1 rxq2

MAC

CPUs

irqs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/19

 



Kernel path

I The interrupt is handled, mostly in softirq context
I napi is used to coalesce interrupts
I Packet processing is done on the CPU that handled the interrupt
I Before going up the network stack, the packet goes through the TC subsystem
I L2 handling, to deal with MAC filtering and VLANs
I L3 handling, to deal with routing
I L4 handling, where we find the socket that will consume the payload

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/19

 



Classification

I Classification consists in identifying packets of interest
I We can then perform actions on these packets
I We first need to dissect the packet
I Determining the various attributes of interest isn’t straightforward
I All fields don’t have a fixed offset in the packet

src dst

ethtypevlan

ver ToS len id

checksum

SRC port

IP SA

DST port

len, chksum, etc.

IP DA

Payload

Proto

src dst ethtype

ver ToS len id

checksum

SRC port

IP SA

DST port

len, chksum, etc.

IP DA

Payload

Proto

src dst

ethtypevlan

ver TC label

NH

SRC port

IPv6 src address

DST port

len, chksum, etc.

IPv6 dst address

Len Hop lim

VLAN, IPv4, TCP IPv4, TCP VLAN, IPv6, TCP

Payload

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/19

 



Flows

I A flow characterizes a group of packets that have a common source and
destination.

I We group packets based on common attributes, such as :
I The source and destination IP addresses (2-tuple)
I The L4 protocol, source and destination ports (5-tuple)

I We manipulate flows to avoid reordering and optimize locality
I We need to extract the required information from the headers.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/19

 



TC flower

I Traffic Control
I Used for traffic shaping, scheduling, policing and filtering
I In our case, we’ll focus on the tc flower ingress filter
I tc flower is a classifier, which uses either software or hardware
I tc qdisc add dev eth0 ingress
I tc filter add dev eth0 protocol ip parent ffff: flower ip_proto

tcp dst_port 80 action drop

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/19

 



ethtool

I ethtool is used to interact with network drivers
I ethtool -N can be used to configure n-tuple filters
I It acts on specific flow types : tcp4, udp6, ether, etc.
I Rules are ordered, the first one that matches takes precedence
I ethtool -N eth0 flow-type tcp4 dst-port 80 action -1 loc 0
I Actions can be :

I Steer to a Receive Queue
I Steer to a RSS context
I Drop

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/19

 



Embedded Linux Conference Europe, October 2019

Offloading Classification
Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/19

 



When and why

I Reduce CPU load
I Spread traffic across CPUs with per-cpu interrupts
I Early drop in case of Denial-of-Service attack
I Early redirection with switches

We must however be careful :
I The kernel might not see important packets
I The kernel might want to have access to the first packet of new flows
I Counters are not up to date anymore

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/19

 



Hardware design

I Need to extract the required fields from the headers at wire speed
I These fields aren’t always at a know position
I We need fast ways to lookup these fields, using a parser
I The attributes extracted by the parser are then used for classification

Parser Classifier Policer DMA Queueing

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/19

 



Ternary Content Addressable Memory

I Very fast lookups, but takes place on the die
I Addressed by value, returns the index of the first match
I Match on a ternary value : 0, 1 and X
I The matched pattern is extracted from the header starting from an offset
I The returned index is used to lookup a SRAM containing match actions

0100110101001010

0110XXXX0100XXXX
XXXXXXXXXXXX1110
0100XXXXXXXX1010
1100XXXXXXXXXXXX

Next offs = 4; VLAN tag present

Next offs = 4; IPv4

Next offs = 12; IPv6

Next offs = 16; TCP

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/19

 



Parser

I Acts as a dissector
I Extract useful information from the packet header
I Take into account the various offsets due to DSA, VLAN and L3/L4
I Used as a pre-step for classification
I Often hardcoded in a firmware or a driver
I Multiple iterations per packet, flags are accumulated

TCAM SRAM

Result Info

offset

matched section
Packet header

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/19

 



Classifier

I Uses information from the parser
I Can use several engines to classify and perform actions :

I TCAM engines, for exact matches
I Hash-based engines, for rate limiting and RSS
I Logic engines for complex rules

I A final policing step decides what to do based on results from engines
I Not all these possibilities can be expressed by the generic frameworks

classification
table

engine 1

engine 2

engine 3...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/19

 



RSS

Receive Side Scaling
I Spread traffic across multiple CPUs
I Compute a hash from specific fields from the header

I s : Source IP, d : Destination IP
I f : Source port, n : Destination port
I v : VLAN tag, m : Destination MAC

I Make sure that traffic from the same flows ends up on the same CPU
I Spreading is configured using an RSS Table

I ethtool -N eth2 rx-flow-hash tcp4 sdfn
I ethtool -X eth0 weight 2 1 1 0

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/19

 



PPv2 example

I PPv2 is found on Marvell SoCs, such as the Armada 70xx and 80xx
I Has a TCAM parser with 256 entries, performing up to 16 matches on 11B
I Classifier has one 512 instruction table, subdivided in subflows
I Has 4 classification engines :

I C2 : TCAM match engine, 8B keys, 256 entries
I C3 : Exact match engine, 12B keys, 4K entries
I C4 : Classification and Marking engine, uses if-then-else constructs
I C3Hx : Computes hashes, for RSS and C3 lookups.

I Can perform drop (in parser or classifier), steer to queue or RSS, limit traffic,
modify and redirect packets.

I Parser and Classifier is shared between multiple ports

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/19

 



PPv2 : Current support

I Support for basic RSS
I Support steering on 2-tuple, 5-tuple and VLAN tag
I MAC and VLAN filtering, performed by the parser
I Support steering to RSS tables
I All Parser and Classifier configuration is done by the kernel, no firmware involved
I Only C2 and C3Hx engines are used, others are way too complex

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/19

 



Conclusion

I Offloading classification requires a lot of hardware configuration
I Most of the time, we need to limit ourselves to a subset of what the HW can do
I There are ongoing efforts to solve the issue of stats reporting
I Performance and power consumption improvements make it worth it
I In most cases, a firmware is in charge of configuring most of the tables

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/19

 



Thank you!
Questions? Comments?

Maxime Chevallier — maxime.chevallier@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2019/elce/chevallier-network-classification-offload/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/19

https://bootlin.com/pub/conferences/2019/elce/chevallier-network-classification-offload/

	Offloading Network Traffic Classification
	Introduction to Ingress Classification
	Offloading Classification

