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Linux boot-upLinux boot-up

• kernel initialization: sequential
– low-level init
– sequential subsystems init
– sequential drivers init
– no good means to set dependencies

• userspace initialization: sequential
– SysV initscripts or derivative



    

Sequential Driver InitSequential Driver Init

• suboptimal
– waiting for a device to init might be a long story
– nothing happens at that time

• incomprehensive
– some drivers depend on others to be init’ed first
– no means in Linux kernel to explicitly specify 

dependencies
– using init levels for drivers init prioritization is bogus



    

Boot time profiling exampleBoot time profiling example

• System configuration
– ARM926 CPU, 300 Mhz
– kernel boots and RAM disk loads from NAND
– AC97 (WM9712) hadrware for touchscreen 

and audio

• Boot time
– best achievement is about 3 seconds to boot
– 50+% spent on NAND and AC97



    

Boot time profiling exampleBoot time profiling example
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Asynchronous Driver InitAsynchronous Driver Init

• start of driver init routines
– sequential
– asynchronous
– dependency-based
– “weight” for an init routine may be specified

• counts if some routines are “equal” otherwise

– callbacks to let the system know the routine 
has completed

• should go well with the device tree model



    

Asynchronous Driver InitAsynchronous Driver Init
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Async Driver InitAsync Driver Init

• Benefits
– Performance

• Faster kernel startup

– Robustness
• manageable sequence of initialization
• system doesn’t hang if someone’s init hangs

• Problems
– sometimes boot time may even increase

• more overhead

– more concurrency, so potentially more races



    

Async Init: you can’t always win Async Init: you can’t always win 
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Async Init: only kernelspace?Async Init: only kernelspace?

• asynchronous driver init
– helps to improve boot time
– helps to solve driver dependency problems

• why only kernel?
– an idea to apply this approach to initscripts

• and it’s not only kernel
– such approaches exist already

• upstart
• initng



    

Userspace Init: legacy wayUserspace Init: legacy way
• SysV initscripts
• init daemon

– jobs separated by run levels
– runs a job when a particular run level is 

entered
• e.g. /etc/init.d/rc 2

• Assumptions on sequence
– e.g.  a storage  device must have been 

before mount from /etc/fstab.



    

SysV init: why legacy?SysV init: why legacy?

• Drives can be plugged in and removed at any 
point

• Storage buses allow more than a fixed number 
of drives
– they must be scanned for new ones

• Network devices can be plugged in/removed at 
any point. 

• Firmware may need to be loaded after the 
device detection, but before it is usable by the 
system. 



    

upstart: an event-based daemonupstart: an event-based daemon

• events
– can be generated by the daemon or sent by 

processes
– cause jobs to be started/stopped

• typical events
– the system has started, 
– the root filesystem is now writable, 
– a block device has been added to the 

system, 
– a filesystem has been mounted



    

Upstart state machineUpstart state machine

• rest states are in red
– the job remains in this 

states until an event 
comes in

• transition states are in 
blue
– allow a job to run shell 

script to prepare to be 
run/stopped/respawned



    

initnginitng
• dependency-based

– pretty similar to async driver init solution

• Jobs declare dependencies on other jobs 
– Starting the job causes its dependencies to 

be started first
• and their dependencies, and so on….

–  When jobs are stopped, if running jobs have 
no dependencies, they themselves can be 
stopped 



    

initng VS upstartinitng VS upstart

• initng problems
– dependency on Apache would need the daemon to be 

running where a dependency on “checkroot” would 
need the script to have finished running 

– you might not know whether something is a 
dependency or not without reading other 
configuration

• mount NFS may be a dependency of everything under /usr 
or may just be a dependency of anything allowing the user 
to log in

• upstart doesn’t have such



    

ConclusionsConclusions

• plain sequential init is obsolete both for 
kernel and userspace

• different approaches should be employed 
for kernelspace and userspace init
– kernelspace: dependency-based

• “async init”

– userspace: event-based
• upstart



    

Questions?Questions?
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