

Parallelizing Linux Boot on CE Parallelizing Linux Boot on CE
DevicesDevices

Vitaly WoolVitaly Wool
Embedded Alley Solutions Inc.Embedded Alley Solutions Inc.

Linux boot-upLinux boot-up

• kernel initialization: sequential
– low-level init
– sequential subsystems init
– sequential drivers init
– no good means to set dependencies

• userspace initialization: sequential
– SysV initscripts or derivative

Sequential Driver InitSequential Driver Init

• suboptimal
– waiting for a device to init might be a long story
– nothing happens at that time

• incomprehensive
– some drivers depend on others to be init’ed first
– no means in Linux kernel to explicitly specify

dependencies
– using init levels for drivers init prioritization is bogus

Boot time profiling exampleBoot time profiling example

• System configuration
– ARM926 CPU, 300 Mhz
– kernel boots and RAM disk loads from NAND
– AC97 (WM9712) hadrware for touchscreen

and audio

• Boot time
– best achievement is about 3 seconds to boot
– 50+% spent on NAND and AC97

Boot time profiling exampleBoot time profiling example

280

940

220150

1340

NAND init, ms
NAND disk copy, ms
TS init, ms
sound init, ms
rest, ms

Asynchronous Driver InitAsynchronous Driver Init

• start of driver init routines
– sequential
– asynchronous
– dependency-based
– “weight” for an init routine may be specified

• counts if some routines are “equal” otherwise

– callbacks to let the system know the routine
has completed

• should go well with the device tree model

Asynchronous Driver InitAsynchronous Driver Init

Row 4

Row 3

Row 2

Row 1

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Asynchronous Driver Start w/ Dependencies

USB

I2C

NAND Init

AC'97 init

wait time

Async Driver InitAsync Driver Init

• Benefits
– Performance

• Faster kernel startup

– Robustness
• manageable sequence of initialization
• system doesn’t hang if someone’s init hangs

• Problems
– sometimes boot time may even increase

• more overhead

– more concurrency, so potentially more races

Async Init: you can’t always win Async Init: you can’t always win 

0

500

1000

1500

2000

2500

3000

Config 1 Config 2 Config 3

std boot, ms

async boot, ms

Async Init: only kernelspace?Async Init: only kernelspace?

• asynchronous driver init
– helps to improve boot time
– helps to solve driver dependency problems

• why only kernel?
– an idea to apply this approach to initscripts

• and it’s not only kernel
– such approaches exist already

• upstart
• initng

Userspace Init: legacy wayUserspace Init: legacy way
• SysV initscripts
• init daemon

– jobs separated by run levels
– runs a job when a particular run level is

entered
• e.g. /etc/init.d/rc 2

• Assumptions on sequence
– e.g. a storage device must have been

before mount from /etc/fstab.

SysV init: why legacy?SysV init: why legacy?

• Drives can be plugged in and removed at any
point

• Storage buses allow more than a fixed number
of drives
– they must be scanned for new ones

• Network devices can be plugged in/removed at
any point.

• Firmware may need to be loaded after the
device detection, but before it is usable by the
system.

upstart: an event-based daemonupstart: an event-based daemon

• events
– can be generated by the daemon or sent by

processes
– cause jobs to be started/stopped

• typical events
– the system has started,
– the root filesystem is now writable,
– a block device has been added to the

system,
– a filesystem has been mounted

Upstart state machineUpstart state machine

• rest states are in red
– the job remains in this

states until an event
comes in

• transition states are in
blue
– allow a job to run shell

script to prepare to be
run/stopped/respawned

initnginitng
• dependency-based

– pretty similar to async driver init solution

• Jobs declare dependencies on other jobs
– Starting the job causes its dependencies to

be started first
• and their dependencies, and so on….

– When jobs are stopped, if running jobs have
no dependencies, they themselves can be
stopped

initng VS upstartinitng VS upstart

• initng problems
– dependency on Apache would need the daemon to be

running where a dependency on “checkroot” would
need the script to have finished running

– you might not know whether something is a
dependency or not without reading other
configuration

• mount NFS may be a dependency of everything under /usr
or may just be a dependency of anything allowing the user
to log in

• upstart doesn’t have such

ConclusionsConclusions

• plain sequential init is obsolete both for
kernel and userspace

• different approaches should be employed
for kernelspace and userspace init
– kernelspace: dependency-based

• “async init”

– userspace: event-based
• upstart

Questions?Questions?

mailto:vital@embeddedalley.commailto:vital@embeddedalley.com

