Parallelizing Linux Boot on CE
Devices

Vitaly Wool
Embedded Alley Solutions Inc.

Linux boot-up

» kernel initialization: sequential
— low-level init
— sequential subsystems init
- sequential drivers init
— no good means to set dependencies

* userspace initialization: sequential
— SysV initscripts or derivative

Sequential Driver Init

* suboptimal
— walting for a device to init might be a long story
— nothing happens at that time

* [ncomprehensive
— some drivers depend on others to be init'ed first

- no means in Linux kernel to explicitly specify
dependencies

— using init levels for drivers init prioritization is bogus

Boot time profiling example

» System configuration
- ARM926 CPU, 300 Mhz
- kernel boots and RAM disk loads from NAND

- AC97 (WM9712) hadrware for touchscreen
and audio

 Boot time

- best achievement is about 3 seconds to boot
— 50+% spent on NAND and AC97

Boot time profiling example

ﬂ,

940

Il NAND init, ms

[0 NAND disk copy, ms
OTS init, ms

l sound init, ms
[]rest, ms

Asynchronous Driver Init

o start of driver init routines
- sequential
— asynchronous
— dependency-based

- “weight” for an init routine may be specified
 counts if some routines are “equal” otherwise
— callbacks to let the system know the routine
has completed

* should go well with the device tree model

Asynchronous Driver Init

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

’ \\&

‘

Async Driver Init

* Benefits
— Performance
* Faster kernel startup

— Robustness
* manageable sequence of initialization
» system doesn’t hang if someone’s init hangs

* Problems

— sometimes boot time may even increase
* more overhead

— more concurrency, so potentially more races

Async Init: you can’t always win ©

3000-

2500

2000

15001 M std boot, ms
[0 async boot, ms

1000

0_ ———
Configl Config2 Config3

Async Init: only kernelspace?

* asynchronous driver init

- helps to improve boot time

- helps to solve driver dependency problems
* why only kernel?

— an idea to apply this approach to initscripts

* and it's not only kernel

— such approaches exist already
* upstart
* initng

Userspace Init: legacy way

* SysV initscripts
* Init daemon

— jobs separated by run levels

— runs a job when a particular run level is
entered

* e.g. /etc/init.d/rc 2
» Assumptions on sequence

- e.g. a storage device must have been
before mount from /etc/fstab.

SysV init: why legacy?

Drives can be plugged in and removed at any
point

Storage buses allow more than a fixed number
of drives

— they must be scanned for new ones

Network devices can be plugged in/removed at
any point.

FiIrmware may need to be loaded after the
device detection, but before it is usable by the
system.

upstart: an event-based daemon

e events

— can be generated by the daemon or sent by
processes

— cause jobs to be started/stopped

* typical events
- the system has started,
— the root filesystem is now writable,

— a block device has been added to the
system,

— a filesystem has been mounted

Upstart state machine

e rest states are In red

— the job remains in this
states until an event
comes in

* transition states are in
blue
— allow a job to run shell

script to prepare to be
run/stopped/respawned

Initng
» dependency-based
— pretty similar to async driver init solution

* Jobs declare dependencies on other jobs
— Starting the job causes its dependencies to
be started first
 and their dependencies, and so on....
— When jobs are stopped, if running jobs have

no dependencies, they themselves can be
stopped

Initng VS upstart

* inithg problems

— dependency on Apache would need the daemon to be
running where a dependency on “checkroot” would
need the script to have finished running

— you might not know whether something is a
dependency or not without reading other
configuration

 mount NFS may be a dependency of everything under /usr
or may just be a dependency of anything allowing the user
to log in

» upstart doesn’t have such

Conclusions

* plain sequential init is obsolete both for
kernel and userspace

* different approaches should be employed
for kernelspace and userspace init
— kernelspace: dependency-based
* “async init”
— userspace: event-based
e upstart

Questions?

mailto:vital@embeddedalley.com

