
Presented by

Marcel Ziswiler
Software Team Lead - 
Embedded Linux BSP
Toradex



WITH YOU TODAY…

Marcel Ziswiler 

Software Team Lead - Embedded Linux BSP

Toradex

• Joined Toradex 2011

• Spearheaded Embedded Linux Adoption

• Introduced Upstream First Policy

• Top 10 U-Boot Contributor

• Top 10 Linux Kernel ARM SoC Contributor

• Industrial Embedded Linux Platform Torizon
Fully Based on Mainline Technology

 Mainline U-Boot with Distroboot

 KMS/DRM Graphics with Etnaviv & Nouveau

 OTA with OSTree

 Docker



• MIPI Display Serial Interface (MIPI DSI)

• Verdin MIPI DSI Display Adapter System Design

• Introduction of the Linux DSI Subsystem

• Linux DRM Stack DSI Bridge Chip Integration

• DSI Bridge Chip Ecosystem

• Bridge Chips Supported in Mainline

• Auto-Detection of DSI Adapters Based on 
EEPROM Contents

• U-Boot: Reading EEPROM Contents and 
Selecting Applicable Device Tree Overlay

• U-Boot FIT Image: Board Specific Device Trees 
and Display Adapter Specific Device Tree 
Overlays

• Live Demo: DSI Auto-Detection

AGENDA

WHAT WE’LL 
COVER TODAY…



• Specification by the Mobile Industry Processor Interface (MIPI) Alliance

• High-speed differential signaling point-to-point serial bus interface between a 
host processor and a display module

• High performance, low power, low electromagnetic interference (EMI)

• Reduced pin count

• Compatibility across different vendors

• One high speed clock lane and one or more data lanes

• Low power (LP) mode or high speed (HS) mode

MIPI Display Serial Interface 
(MIPI DSI)



• MIPI DSI Specification

 Initial Version: May 2006

 Current Version: MIPI DSI v1.3.1 (December 2015)
 

• Successor MIPI DSI-2 Specification

 Initial Version: January 2016

 Current Version: v1.1 (May 2018)

 Support for both D-PHY and C-PHY

 Supports ultra-high definition (4K and 8k)

MIPI Display Serial Interface 
(cont.)



• Physical Layer:

 MIPI D-PHY

 D-PHY 1.01: 1.0Gbps/lane

 D-PHY 1.1: 1.5Gbps/lane

 D-PHY 1.2: 2.5Gbps/lane

 D-PHY 2.0: 4.5Gbps/lane

• MIPI Display Command Set (MIPI DCS)

• Incorporates Display Stream Compression (DSC)

 Standard from the Video Electronics Standards Association (VESA)

• De-facto standard display interface featured by modern higher-end SoCs

• No long-term available discrete MIPI DSI display panels

• Bridge chips converting to more common display interfaces like parallel RGB, LVDS, (e)DP or HDMI

MIPI Display Serial Interface 
(cont.)



• Generic system concept

• DSI display adapter boards
integrating various bridge chips

• ST M24C02 2kb EEPROM
to store identification/parametrisation

• DSI Mezzanine Connector

 MIPI DSI: 1 clk + 4 data lanes

 GPIOs

 BKL1_EN

 Touch interrupt

 2 x I2C: bridge chip + DDC/EDID

 PWM: backlight

 I2S: optional audio

 Generic system control signals

 PWR_EN_MOCI, SLEEP_MOCI#, RESET_MOCI#

Verdin MIPI DSI Display Adapter 
System Design



• NXP i.MX 8M Mini SoC

• Single display controller, LCDIF

• MIPI DSI output with up to four data lanes
Northwest Logic MIPI DSI host controller IP

• MIPI D-PHY 1.2
maximum data transfer per lane only 1.5Gbps

• Resolutions up 1920x1080p60 and 1800x1200p60

Verdin iMX8M Mini



• Lontium Semiconductor LT8912B
MIPI DSI to HDMI bridge

• HDMI V1.4 1080p (1920x1080),
8-bit RGB, up to 60Hz

• ST HDMI2C1-14HD ESD
protection and signal conditioning

• Type A standard HDMI connector

Verdin DSI to HDMI Adapter



• Texas Instruments SN65DSI84
MIPI DSI to dual-link LVDS bridge

• single/dual-lane LVDS up-to 1920x1200/1366x768,
60fps, 24bpp

• LVDS and touch connectors compatible with
Toradex Capacitive Touch Display 10.1" LVDS

Verdin DSI to LVDS Adapter



• DRM MIPI DSI Core: Common logic and helpers to deal with MIPI DSI peripherals

Introduction of the Linux DSI 
Subsystem



Linux DRM Stack
DSI Bridge Chip Integration
• DRM bridge

 drm_bridge_funcs: attach, enable, disable

 drm_bridge_add()

• DRM connector

 drm_connector_funcs: fill_modes, detect, destroy

 drm_connector_helper_funcs: get_modes, mode_valid

 drm_connector_init/_helper_add/_attach_encoder(), drm_panel_attach()

• I2C device

 Detected using regular id_table and of_match_table

 Regmap: devm_regmap_init_i2c()

 i2c_set_clientdata()

• MIPI DSI device

 mipi_dsi_device_register_full()

 mipi_dsi_attach()



• Availability of “super secret” data sheets

• Ancient downstream or bare skeleton drivers only

• Lots of hard-coded parameters

• Link bring-up sequences not well documented

 May require a lot of trial and error

• Divider/frequency limitations on either controller side, bridge side or both

 May require running outside of recommended range

DSI Bridge Chip Integration Pitfalls



• Lontium Semiconductor LT8912B MIPI DSI to HDMI bridge

 Adopted downstream driver from Rockchip Linux on GitHub

 Forward ported to later DRM API

 Fixed confusing use of same name for struct and instance

 Reworked driver to be a proper I2C device

 Full register set taken from Lontium pseudo code driver

 Improved regmap integration

 Properly reserve i2c sub addresses

 Added regular I2C based DDC/EDID handling

 Added GPIO based hot-plug detection

 Hot-plug detect GPIO handling crashed using GPIO expander (cansleep variant of gpiod_get_value fixed it)

 Bus_format was not properly set

 Not pretty but hey it works (;-p)

 Further clean-up and upstreaming pending

How About Bridge Chips Used in our 
Current Adapters?



• Texas Instruments SN65DSI84 MIPI DSI to dual-link LVDS bridge

 Downstream driver taken from a patch in CompuLab Yocto Meta Layer on GitHub

 Luckily already adopted to usage on i.MX 8M Mini

 Hard-coded for single-channel LVDS use-case

 Implementing support for dual channel LVDS pending

 Further clean-up and upstreaming pending

How About Bridge Chips Used in our 
Current Adapters? (cont.)



• Vendors still reluctant to mainlining drivers

• Few mainline supported bridge chips

• Few examples to copy from
 

• Procurement of actual silicon may be difficult
 

• Conformance of MIPI DSI host IP vs. bridge chip silicon 

DSI Bridge Chip Ecosystem



Bridge Chips Supported in Mainline

• drivers/gpu/drm/bridge
 

• Differentiate between SoC internal IP, discrete external bridge chips and directly connected panels
 

• Northwest Logic MIPI DSI host controller as found on NXP i.MX 8 series

• Analog Devices ADV7533/35 MIPI/DSI Receiver with HDMI Transmitter

• Parade PS8640 MIPI DSI to eDP Converter

• Texas Instruments SN65DSI86 DSI to eDP bridge

• Toshiba TC358764 DSI/LVDS bridge

• Toshiba TC358768AXBG/TC358778XBG MIPI DSI bridge chips

• Raspberry Pi 7-inch Touch Display

• Toshiba TC358762 DSI to DPI aka parallel RGB bridge



• Straight forward idea 1:

 Regular device tree: setting bridge status to disabled vs. okay

 Device graph: Linking endpoint and remote-endpoint nodes?

• Full flexibility requires device tree overlays

• Straight forward idea 2:

 Just storing device tree overlay in EEPROM

 While simple DTBOs may be below 1kb more complex ones 
quickly account for more than 2kb in size!

• Compromise: Just store product number as part of regular 
Toradex factory configuration block aka ConfigBlock

• Select device tree overlay to be applied based on product 
number

Auto-Detection of DSI Adapters Based 
on EEPROM Contents



• Generalised ConfigBlock handling from NAND/eMMC to EEPROMs

• Table with product ID to device tree overlay file name mapping

• Distroboot script to apply device tree overlays based both on auto-detection as well as overlays.txt file

• HDMI may do hot-plug detect

• DDC/EDID vs. custom display-specific parametrisation (cascading device tree overlays)

• LVDS usually requires further parametrisation

 Single/dual-channel

 Colour format

 Panel resolution and timing

U-Boot: Reading EEPROM Contents
and Selecting Applicable Device Tree Overlay



Device Tree Overlays



• FIT image allows convenient packing of Linux kernel 
binary together with various device trees, device tree 
overlays and/or ramdisks

• May be booted as follows:
bootm ${loadaddr}#config@${soc}-${fdt_module}-$
{fdt_board}.dtb#${display_adapter_dtbo}

• In our case fdt_module is deduced from the EEPROM 
on the module, fdt_board from the one on the carrier 
board and display_adapter_dtbo from the one on the 
display adapter

U-Boot FIT Image: 
Board Specific Device 
Trees and Display 
Adapter Specific 
Device Tree Overlays



• More complex device tree overlays may require symbols

 Make sure device trees and overlays are all compiled with DTC_FLAGS='-@'

• Referencing nodes via hex addresses from within device tree overlays proves to be case sensitive!

 Make sure all adhere to consistent lower-case hex numbering

• Troubleshooting what really got applied

 Use dtc -I fs on target and dump /proc/device-tree

Device Tree Overlay Pitfalls



Live Demo: DSI Auto-Detection



• https://www.mipi.org/specifications/dsi

• https://www.businesswire.com/news/home/20060523005651/en/MIPI-Alliance-Releases-Serial-Interface-Standard-Display

• https://developer.toradex.com/products#verdin-som-family

• https://bootlin.com/pub/conferences/2017/kr/ripard-drm/ripard-drm.pdf

• https://elinux.org/images/7/73/Jagan_Teki_-_Demystifying_Linux_MIPI-DSI_Subsystem.pdf

• Lontium Semiconductor LT8912B MIPI DSI to HDMI bridge driver
http://git.toradex.com/cgit/linux-toradex.git/commit/?id=331ac1cf6e09d90e7d9ab39445bc8812ff33f178

• https://github.com/compulab-yokneam/meta-bsp-imx8mm/blob/master/recipes-kernel/linux/compulab/imx8mm/0013-
sn65dsi83-Add-ti-sn65dsi83-dsi-to-lvds-bridge-driver.patch

• https://developer.toradex.com/software/toradex-easy-installer 

References



Q&A



THANK YOU
FOR YOUR INTEREST

www.toradex.com
developer.toradex.com
community.toradex.com
labs.toradex.com


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

