Wireless Networking with IEEE 802.15.4 and 6LoWPAN

Alan Ott Embedded Linux Conference – Europe November 5, 2012

- IEEE 802.15.4 is a standard for low-power, low data rate wireless communication between small devices.
- Forms the basis for Low Rate, Wireless Personal Area Networks (LR-WPANs)
 - Low transmitter power
 - Small MTU
 - Low power consumption
 - Low cost

"I've heard of that; you mean ZigBee."

- 802.15.4 is not the same thing as ZigBee.
- 802.15.4 is a MAC and PHY layer protocol (OSI layers 1 and 2).
- ZigBee is a Network Layer (OSI layer 3) protocol which sits on top of IEEE 802.15.4.
 - There are several layer 3 protocols which can make use of 802.15.4

A Word About ZigBee

- ZigBee is a trademark of the ZigBee Alliance, the group which creates and maintains the standard.
- The ZigBee standard is available for no charge for non-commerical purposes only.
- A paid membership in the ZigBee Alliance is required in order to produce products which use ZigBee.

A Word About ZigBee

- ZigBee's license conflicts with the GPL and other Free Software licenses.
- Until the ZigBee Alliance changes their license, there will likely not ever be an implementation of ZigBee in the Linux kernel.

A Word about Zigbee

- Zigbee IP Stack
 - Not to be confused with 802.15.4 and 6LoWPAN

 Zigbee Alliance Protocol which is based on Zigbee and 6LoWPAN.

- Higher-level Protocols which make use of 802.15.4:
 - Zigbee
 - Zigbee Alliance's mesh networking protocol
 - MiWi Mesh and MiWi P2P
 - Microchip's proprietary mesh and P2P protocols
 - 6LoWPAN
 - IPv6 over 802.15.4
 - WirelessHART
 - Industrial Automation
 - ISA100.11a
 - Manufacturing, Control, Automation

- Specifications
 - Operates on several bands:
 - 2.4 GHz ISM band
 - (Q-QPSK at 250 kb/s)
 - 915 MHz
 - (BPSK at 40 kb/s, ASK at 250 kb/s, Q-QPSK at 250 kb/s)
 - 868 MHz
 - (BPSK at 20 kb/s, ASK at 250 kb/s, Q-QPSK at 100 kb/s)

- Specifications
 - Output Power
 - 2.4 GHz
 - 20 dBm (100 mW) (US/Europe)
 - 915 MHz
 - > 10 dBm
 - 868 MHz
 - 30 dBm (1 W US)
 - Check your local regulations.
 These numbers are not legal advice!

- Specifications
 - Power Draw
 - Microchip **MRF24J40MA** (2.4GHz, 0 dBm, 3.3v)
 - 19 mA RX (typ)
 - 23 mA TX (typ)
 - Texas Instruments CC2420 (2.4GHz, 0 dBm, 3.3v)
 - 18.8 mA RX
 - 17.4 mATX
 - 426 uA Idle
 - Freescale **MC13202** (2.4GHz, 3.6 dBm, 3.3v)
 - 37 mA RX
 - 30 mA TX
 - 500 uA Idle

Specifications

- Data Rate
 - Up to **250 kb/s** depending on band and mode
 - Higher if proprietary modes are used
 - (MRF24J40 can do 625 kb/s in Turbo mode)
- MTU
 - 127 Bytes per frame (including headers)
 - 802.15.4g is likely to bring a 2047-byte MTU
 - This will of course require different hardware

- Uses of 802.15.4
 - Industrial control and monitoring
 - Wireless sensor networks
 - Intelligent agriculture
 - Security systems
 - Smart Grid

Images from Wikipedia

- Types of Devices
 - Full Function Device (FFD)
 - Can talk to all types of devices
 - Supports full protocol
 - Reduced Function Device (RFD)
 - Can only talk to an FFD
 - Lower power consumption
 - Minimal CPU/RAM required

PANs

- Devices are segregated into Personal Area Networks (PAN)
 - Multiple PANs can operate on a single channel.
 - Each PAN has a PAN Identifier
 - Devices can communicate between PANs
 (inter-PAN) or within their own PAN (intra-PAN).

- PAN Identifier
 - 16-bit number
 - Does not need assignment from a central authority
 - No large sums of money involved like with USB or Zigbee
 - PAN ID can be pre-determined or scanned for at coordinator start-up time.
 - Can scan for a fixed PAN ID on each channel
 - Can scan for multiple PAN ID's on a single channel
 - Frames can be sent inter-PAN
 - Broadcast PAN ID is 0xffff (all PANs)

- Addressing
 - Each device has two addresses
 - Long Address
 - 64-bit globally unique device ID
 - Short Address
 - **16-bit** PAN-specific address
 - Assigned by the PAN coordinator at association time
 - Broadcast address
 - Addresses all Nodes in a PAN
 - Short Address: 0xffff
- → Short and long addresses may be mixed in a MAC header.

- Coordinator
 - Each PAN has a PAN coordinator
 - Full-function device (FFD)
 - Processes requests to join/leave the network
 - Assigns short addresses to devices
 - Short addresses are optional

- Beacon-Enabled Networks
 - IEEE 802.15.4 networks can optionally be beaconenabled.
 - The PAN Coordinator sends a beacon frame to synchronize and delineate Superframes.
 - Access to the channel is **slotted**.
 - Superframes can contain Guaranteed Time Slots (GTS), each of which can be assigned to a specific device, preventing media access contention.
 - Beacon-enabled networks enable devices to consume less power, because the receivers can be switched off during parts of the superframe.

Beacon-Enabled Network Superframe

- Frames must be sent in one of the slots.
 - 16 slots total, one of which contains the beacon frame.

 Beacon-Enabled Network Superframe with Guaranteed Time Slots (GTS)

 Slots in the Contention-Free Period are each reserved for individual devices.

- Beaconless networks
 - No beacon frames transmitted by the coordinator
 - Receivers must be listening all the time
 - Full-time contention-access
 - Unslotted
 - Uses more battery, but easier to configure

- Meshing
 - Meshing is the ability to route messages through multiple hops on the network between source and destination.
 - While 802.15.4 is designed with meshing in mind, it is not part of the 802.15.4 standard, and left to the network layer.
 - ZigBee and MiWi support meshing

- Frame Types
 - Four Types of frame
 - Beacon Frame
 - Sent by Coordinator to set up the Superframe structure.
 - **Data** Frame
 - Transfers application data.
 - Acknowledgement Frame
 - Provide confirmation of reception
 - MAC Command Frame
 - MAC-layer network management
 - Associate, Disassociate,
 Beacon request, GTS request

Data Frame Format

Source: IEEE 802.15.4-2003 Spec

- Security
 - AES encryption
 - Several modes of encryption with increasing levels of complexity and security are available.
 - Using lower security when appropriate will reduce computational complexity and save battery life.
 - **Pre-shared key**, symmetric cryptography

Overview

- It is desirable to use IP to communicate with small devices.
 - Widely deployed
 - IPv6's addressing space is large, allowing even small devices to have a real-world routable IPv6 address.
- MTU issues:
 - IPv6 has an MTU requirement of 1280 bytes.
 - 802.15.4 has an MTU of **127** bytes.

- Overview
 - Other IPv6 issues
 - The header overhead is large
 - 802.15.4 maximum frame overhead of 25 bytes
 - Link-layer security can be as high as 21 bytes
 - → This leaves 81 bytes left
 - 40-byte IP header
 - 8-byte UDP header
 - → 33 bytes remaining for actual data
 - This is clearly less than desirable

- Overview
 - Need a way to wedge IPv6 into 802.15.4
 - The solution: 6LoWPAN (RFC 4944 and RFC 6282)
 - Packet fragmentation below the Network Layer
 - Header Compression
 - Compress IP addresses when they can be derived from other headers, such as the 802.15.4 MAC header.
 - Compress Prefix for link-local (fe80::)
 - Elide address completely when it can be fully derived from the link-layer address.
 - Compress common headers:
 - TCP, UDP, ICMP

Overview

- Meshing
 - 6LoWPAN has a Mesh Address Header, to support routing of packets in a mesh network, but leaves the details of routing to the link layer.
 - Remember that 802.15.4 leaves mesh routing the network layer.
 - Result? Good luck with meshing.

- Implications
 - Using 6LoWPAN and IPv6, every small device can have a routable IP.
 - This makes administration much easier
 - It also makes security more important
 - Standard tools can be used to administer small devices.
 - Web-based interfaces
 - ssh, telnet, FTP, etc.

Linux Support for IEEE 802.15.4 and 6LoWPAN

Support in Linux

- Projects
 - There are currently two kernel trees, and two project websites.
 - Linux-Zigbee project
 - http://linux-zigbee.sourceforge.net
 - Linux-wsn project
 - http://code.google.com/p/linux-wsn/
 - There is work being done to fix this up

Support in Linux

Linux-Zigbee Project

- Started by engineers at Siemens
- Originally intended to provide an in-kernel Zigbee implementation
 - Once licensing incompatibilities were discovered, this goal shifted to implementing 802.15.4 and 6LoWPAN.

Status

- Project kernel (based on 3.3-rc5) has working implementation of 802.15.4 and some 6LoWPAN.
- Key players have since been re-assigned
- Kernel hasn't been updated in 6 months

Linux-Zigbee Project

- Userspace tools
 - iz network device configuration tool
 - izcoordinator PAN coordinator implementation
 - izchat simple raw 802.15.4 chat program for testing.

Drivers

- Atmel AT86RF230
- Texas Instruments CC2420
- Analog Devices ADF7272
- Redwire Econotag (uses serial.c)

- Linux-wsn Project
 - After re-assignment of Siemens engineers,
 Alexander Smirnov started getting the work from Linux-zigbee into the mainline kernel.
 - Current mainline Linux kernel now contains the most up-to-date implementation.
 - New patches go through Dave Miller's net-next tree.

- Linux-wsn Project
 - Current Support:
 - Same userspace tools as Linux-zigbee
 - 802.15.4 Raw sockets
 - 6LoWPAN
 - Drivers
 - Atmel AT86RF230
 - Microchip MRF24J40
 - Redwire Econotag (currently out-of-tree)

- Limitations
 - 802.15.4 **TODO** list
 - Beacon-enabled networks (with and without GTS)
 - Security
 - Association / disassociation
 - Scanning
 - Acknowledgement
 - More Device drivers
 - Likely much much more

- Limitations
 - 6LoWPAN Current Limitations
 - Not all address compression types are supported.
 - Communication between Linux nodes is OK
 - Communication between Linux and other OS's is not
 - Uncompressed headers not supported
 - Some header types are not supported

- Supported Features
 - Don't be put off, there's a lot of stuff that does work!
 - IPv6 communication works between Linux devices
 - ssh, ping6, etc.
 - Packet capturing with tcpdump and Wireshark.

Configuring a device:

```
iz listphy # show all wpan-phy physical devices
iz add wpan-phy0 # create wpan0 attached to wpan-phy0
ip link set wpan0 address a0:a0:a0:a0:a0:a0:a0
ifconfig wpan0 up
```

```
# Set the PAN ID, channel and short address.

# This is a temporary hack. iz assoc eventually be used.

export PID_FILE=/var/run/izpid

izcoordinator -i wpan0 -d 1 -s 2 -p 777 -c 11 -l lease & sleep 1
```

Create a 6LoWPAN link and set its hardware address
ip link add link wpan0 name lowpan0 type lowpan
ip link set lowpan0 address a0:0:0:0:0:0:0:2
ifconfig lowpan0 up

Other Support for IEEE 802.15.4 and 6LoWPAN

Other OS's

- Contiki OS
 - Adam Dunkels
 - Sweedish Institute for Computer Science
 - Author of uIP and lwIP
 - Supports IPv6, 802.15.4, and 6LoWPAN
 - Runs on small to tiny CPUs
 - MC1322x, AVR, 6502, others
 - Not real-time, but uses protothreads
 - http://www.contiki-os.org/
 - BSD License

Other OS's

- TinyOS
 - Maintained by the TinyOS Alliance
 - Started with UC Berkeley, Intel Research, and Crossbow Technologies
 - Runs on slightly larger hardware than Contiki
 - MSP430, ATmega128, XScale PXA271
 - Applications written in nesC, similar to C
 - Custom GNU Toolchain
 - Has support for Beacon-Enabled Networks

Demonstration

- Hardware Used
 - Node 1
 - BeagleBone
 - Microchip MRF24J40MA
 - Maxbotix Ultrasonic Range Finder (HRLV-EZ0)
 - Node 2
 - Laptop
 - Redwire Econotag

- Microchip MRF24J40MA
 - FCC, IC, ETSI certified (US, Canada, Europe)
 - Fully integrated module, only needs SPI connection
 - 2.4 GHz, 0 dBm (1 mW)
 - \$10 USD for single units
 - Supported by Mainline kernel as of 3.7-rc1

- Redwire Econotag
 - Mariano Alvira, Redwire LLC
 - http://www.redwirellc.com/
 - http://mc1322x.devl.org/
 - Based on Freescale MC13224
 - ARM7 SOC
 - Integrated 802.15.4 radio (4.5 dBm)
 - JTAG and console over USB (FTDI)
 - Debug with OpenOCD and GDB
 - Well supported by Contiki-OS
 - Firmware to connect to the Linux 802.15.4 Serial driver.

BeagleBone

- Texas Instruments / CircuitCo
- AM3359, ARM Cortex-A8 SOC
- 3.3v I/O, 0.1" spaced connectors
- Boots mainline kernel +patches
- Ethernet, USB host and device Micro SD
- Great for breadboard prototypes
- http://www.beagleboard.org

- Application
 - Security System
 - Ultrasonic range sensor attached to the BeagleBone
 - Maxbotix HRLV-EZ0, connected to UART2
 - Alarm console on PC
 - Set, Unset, Alarm indication
 - When alarm is set, and range sensor detects a person, the alarm trips.
 - Alarm is indicated until reset
 - UDP packets send commands and indicate alarm trip.

- Sensor Board
 - Adafruit Proto Cape Kit
 - Microchip MRF24J40MA
 - Maxbotix HRLV-EZ0
 - LM7805 (5V regulator)
 - Battery Snap Connector

Installed

- Mounted in an Altoids tin over the door behind you.
- Mounted at angle, sensor facing down.
- A piece of cork holds the tin open at the right angle.
- (picture is from below, looking up at it).

- Controller GUI
 - Alarm not tripped

- Controller GUI
 - Alarm tripped
 - Current return is in inside range threshold

- Source Code
 - Mainline Kernel 3.7.0-rc2 (PC)
 - BeagleBone kernel from:
 - https://github.com/beagleboard/kernel/tree/3.7
 - Resources downloadable from:
 - http://www.signal11.us/oss/elce2012
 - Tony Cheneau's 6lowpan and ieee802154 fixes
 - Source code for sensor and controller software
 - Kernel device tree mods for BeagleBone
 - Hacky board stub file (mrf24j40 driver has no DT support)
 - Hack to slow down the Econotag TX (since we don't do acks).

Lessons Learned

- 6LoWPAN requires all fragments of a single IPv6 packet to be received at the same time.
 - No re-transmission request at the 6LoWPAN layer.
 - MAC-level acknowledgement and retransmission is really needed to make it work.
- Accounting for different speeds of hardware is important.
- The mainline BeagleBone kernels are experimental!
 - It's hard to be on the bleeding edge of two things at once.

Acknowledgements

- Presentation Reviewers:
 - Tony Chenau
- #beagle (freenode) help desk:
 - Koen Kooi
 - Matt Porter
 - Hunyue Yau
 - Matt Ranostay
 - Pantelis Antoniou
- Hardware Support:
 - Aaron Wiginton

Signal11 s o f t w A R E

Alan Ott alan@signal11.us www.signal11.us +1 407-222-6975 (GMT -5)