IEEE 802.15.4
IEEE 802.15.4

- IEEE 802.15.4 is a standard for **low-power, low data rate** wireless communication between small devices.
- Forms the basis for Low Rate, Wireless Personal Area Networks (LR-WPANs)
 - Low transmitter power
 - Small MTU
 - Low power consumption
 - Low cost
IEEE 802.15.4

“I've heard of that; you mean ZigBee.”

- 802.15.4 is not the same thing as ZigBee.
- 802.15.4 is a MAC and PHY layer protocol (OSI layers 1 and 2).
- ZigBee is a Network Layer (OSI layer 3) protocol which sits on top of IEEE 802.15.4.
 - There are several layer 3 protocols which can make use of 802.15.4
A Word About ZigBee

- ZigBee is a trademark of the **ZigBee Alliance**, the group which creates and maintains the standard.
- The ZigBee standard is available for no charge for **non-commercial** purposes only.
- A **paid membership** in the ZigBee Alliance is required in order to produce products which use ZigBee.
A Word About ZigBee

- ZigBee's license **conflicts** with the GPL and other Free Software licenses.
- Until the ZigBee Alliance changes their license, there will **likely not ever be** an implementation of ZigBee in the Linux kernel.
A Word about Zigbee

- Zigbee IP Stack
 - Not to be confused with 802.15.4 and 6LoWPAN
 - Zigbee Alliance Protocol which is based on Zigbee and 6LoWPAN.
IEEE 802.15.4

- Higher-level Protocols which make use of 802.15.4:
 - **Zigbee**
 - Zigbee Alliance's mesh networking protocol
 - **MiWi Mesh and MiWi P2P**
 - Microchip's proprietary mesh and P2P protocols
 - **6LoWPAN**
 - IPv6 over 802.15.4
 - **WirelessHART**
 - Industrial Automation
 - **ISA100.11a**
 - Manufacturing, Control, Automation
IEEE 802.15.4

- Specifications
 - Operates on several bands:
 - **2.4 GHz** ISM band
 - (Q-QPSK at 250 kb/s)
 - **915 MHz**
 - (BPSK at 40 kb/s, ASK at 250 kb/s, Q-QPSK at 250 kb/s)
 - **868 MHz**
 - (BPSK at 20 kb/s, ASK at 250 kb/s, Q-QPSK at 100 kb/s)
IEEE 802.15.4

• Specifications
 • Output Power
 – 2.4 GHz
 • 20 dBm (100 mW) (US/Europe)
 – 915 MHz
 • > 10 dBm
 – 868 MHz
 • 30 dBm (1 W US)

– Check your local regulations.
These numbers are not legal advice!
IEEE 802.15.4

• Specifications
 • Power Draw
 - Microchip MRF24J40MA (2.4GHz, 0 dBm, 3.3v)
 • 19 mA RX (typ)
 • 23 mA TX (typ)
 - Texas Instruments CC2420 (2.4GHz, 0 dBm, 3.3v)
 • 18.8 mA RX
 • 17.4 mA TX
 • 426 uA Idle
 - Freescale MC13202 (2.4GHz, 3.6 dBm, 3.3v)
 • 37 mA RX
 • 30 mA TX
 • 500 uA Idle

→ Consult datasheets for details!
IEEE 802.15.4

• Specifications
 • Data Rate
 - Up to **250 kb/s** depending on band and mode
 - Higher if proprietary modes are used
 • (MRF24J40 can do 625 kb/s in Turbo mode)
 • MTU
 - **127** Bytes per frame (including headers)
 - 802.15.4g is likely to bring a 2047-byte MTU
 • This will of course require different hardware
IEEE 802.15.4

- Uses of 802.15.4
 - Industrial control and monitoring
 - Wireless sensor networks
 - Intelligent agriculture
 - Security systems
 - Smart Grid
IEEE 802.15.4

• Types of Devices
 • **Full Function Device** (FFD)
 - Can talk to all types of devices
 - Supports full protocol
 • **Reduced Function Device** (RFD)
 - Can only talk to an FFD
 - Lower power consumption
 - Minimal CPU/RAM required
IEEE 802.15.4

- PANs
 - Devices are segregated into Personal Area Networks (PAN)
 - Multiple PANs can operate on a single channel.
 - Each PAN has a **PAN Identifier**
 - Devices can communicate **between PANs** (inter-PAN) or within their own PAN (intra-PAN).
IEEE 802.15.4

• PAN Identifier
 • 16-bit number
 • Does not need assignment from a central authority
 - No large sums of money involved like with USB or Zigbee
 • PAN ID can be pre-determined or scanned for at coordinator start-up time.
 - Can scan for a fixed PAN ID on each channel
 - Can scan for multiple PAN ID's on a single channel
• Frames can be sent inter-PAN
• Broadcast PAN ID is 0xffffffff (all PANs)
IEEE 802.15.4

- Addressing
 - Each device has two addresses
 - Long Address
 - 64-bit globally unique device ID
 - Short Address
 - 16-bit PAN-specific address
 - Assigned by the PAN coordinator at association time
- Broadcast address
 - Addresses all Nodes in a PAN
 - Short Address: 0xffff

- Short and long addresses may be mixed in a MAC header.
IEEE 802.15.4

- Coordinator
 - Each PAN has a **PAN coordinator**
 - Full-function device (FFD)
 - Processes requests to join/leave the network
 - Assigns short addresses to devices
 - Short addresses are optional
IEEE 802.15.4

- **Beacon-Enabled Networks**
 - IEEE 802.15.4 networks can optionally be beacon-enabled.
 - The PAN Coordinator sends a beacon frame to synchronize and delineate **Superframes**.
 - Access to the channel is **slotted**.
 - Superframes can contain **Guaranteed Time Slots** (GTS), each of which can be assigned to a specific device, preventing media access contention.
 - Beacon-enabled networks enable devices to consume **less power**, because the receivers can be switched off during parts of the superframe.
IEEE 802.15.4

- Beacon-Enabled Network Superframe

- Frames must be sent in one of the slots.
 - 16 slots total, one of which contains the beacon frame.
IEEE 802.15.4

- Beacon-Enabled Network Superframe with Guaranteed Time Slots (GTS)

- Slots in the Contention-Free Period are each reserved for individual devices.
IEEE 802.15.4

- Beaconless networks
 - No beacon frames transmitted by the coordinator
 - Receivers must be listening all the time
 - Full-time *contention-access*
 - *Unslotted*
 - Uses *more battery*, but easier to configure
IEEE 802.15.4

- Meshing
 - **Meshing** is the ability to route messages through multiple hops on the network between source and destination.
 - While 802.15.4 is designed with meshing in mind, it is not part of the 802.15.4 standard, and left to the network layer.
 - ZigBee and MiWi support meshing
IEEE 802.15.4

Obligatory Meshing Graphic
Source: IEEE 802.15.4-2003 Spec
IEEE 802.15.4

• Frame Types
 • Four Types of frame
 – Beacon Frame
 • Sent by Coordinator to set up the Superframe structure.
 – Data Frame
 • Transfers application data.
 – Acknowledgement Frame
 • Provide confirmation of reception
 – MAC Command Frame
 • MAC-layer network management
 – Associate, Disassociate, Beacon request, GTS request
IEEE 802.15.4

- Data Frame Format
 Source: IEEE 802.15.4-2003 Spec
IEEE 802.15.4

• Security
 • AES encryption
 - Several modes of encryption with increasing levels of complexity and security are available.
 - Using lower security when appropriate will reduce computational complexity and save battery life.
 - Pre-shared key, symmetric cryptography
6LoWPAN
6LoWPAN

• Overview
 • It is desirable to use IP to communicate with small devices.
 – Widely deployed
 – IPv6's addressing space is large, allowing even small devices to have a real-world routable IPv6 address.
 • MTU issues:
 – IPv6 has an MTU requirement of 1280 bytes.
 – 802.15.4 has an MTU of 127 bytes.
6LoWPAN

• Overview
 • Other IPv6 issues
 – The header overhead is large
 • 802.15.4 maximum frame overhead of 25 bytes
 • Link-layer security can be as high as 21 bytes
 ➔ *This leaves 81 bytes left*
 • 40-byte IP header
 • 8-byte UDP header
 ➔ *33 bytes remaining for actual data*
 – This is clearly less than desirable
6LoWPAN

- Overview
 - Need a way to wedge IPv6 into 802.15.4
 - The solution: 6LoWPAN (RFC 4944 and RFC 6282)
 - Packet fragmentation **below** the Network Layer
 - Header Compression
 - Compress IP addresses when they can be derived from other headers, such as the 802.15.4 MAC header.
 - Compress Prefix for link-local (fe80::)
 - Elide address completely when it can be fully derived from the link-layer address.
 - Compress common headers:
 - TCP, UDP, ICMP
6LoWPAN

• Overview
 • Meshing
 – 6LoWPAN has a **Mesh Address Header**, to support routing of packets in a mesh network, but leaves the details of routing to the **link layer**.
 – Remember that 802.15.4 leaves mesh routing the **network layer**.
 – Result? Good luck with meshing.
6LoWPAN

- **Implications**
 - Using 6LoWPAN and IPv6, every small device can have a routable IP.
 - This makes administration much easier
 - It also makes security more important
 - Standard tools can be used to administer small devices.
 - Web-based interfaces
 - ssh, telnet, FTP, etc.
Linux Support for IEEE 802.15.4 and 6LoWPAN
Support in Linux

- Projects
 - There are currently two kernel trees, and two project websites.
 - **Linux-Zigbee** project
 - **Linux-wsn** project
 - http://code.google.com/p/linux-wsn/
 - There is work being done to fix this up
Support in Linux

• **Linux-Zigbee** Project
 • Started by engineers at Siemens
 • Originally intended to provide an in-kernel Zigbee implementation
 – Once licensing incompatibilities were discovered, this goal shifted to implementing 802.15.4 and 6LoWPAN.

• Status
 • Project kernel (based on 3.3-rc5) has working implementation of 802.15.4 and some 6LoWPAN.
 • Key players have since been re-assigned
 • Kernel hasn't been updated in 6 months
Support in Linux

• **Linux-Zigbee** Project
 • Userspace tools
 - *iz* – network device **configuration** tool
 - *izcoordinator* – **PAN coordinator** implementation
 - *izchat* – simple raw 802.15.4 chat program for testing.
 • Drivers
 - Atmel AT86RF230
 - Texas Instruments CC2420
 - Analog Devices ADF7272
 - Redwire Econotag (uses serial.c)
Support in Linux

- **Linux-wsn Project**
 - After re-assignment of Siemens engineers, **Alexander Smirnov** started getting the work from Linux-zigbee into the mainline kernel.
 - Current **mainline Linux kernel** now contains the most up-to-date implementation.
 - New patches go through Dave Miller's **net-next** tree.
Support in Linux

• **Linux-wsn** Project
 • Current Support:
 - Same userspace tools as Linux-zigbee
 - 802.15.4 Raw sockets
 - 6LoWPAN
 • Drivers
 - Atmel AT86RF230
 - Microchip MRF24J40
 - Redwire Econotag (currently out-of-tree)
Support in Linux

• Limitations
 • 802.15.4 TODO list
 - Beacon-enabled networks (with and without GTS)
 - Security
 - Association / disassociation
 - Scanning
 - Acknowledgement
 - More Device drivers
 - Likely much much more
Support in Linux

• Limitations
 • 6LoWPAN Current Limitations
 – Not all address compression types are supported.
 • Communication between Linux nodes is OK
 • Communication between Linux and other OS's is not
 – Uncompressed headers not supported
 – Some header types are not supported
Support in Linux

- Supported Features
 - Don't be put off, there's a lot of stuff that does work!
 - IPv6 communication works between Linux devices
 - ssh, ping6, etc.
 - Packet capturing with tcpdump and Wireshark.
Support in Linux

Configuring a device:

```
iz listphy  # show all wpan-phy physical devices
iz add wpan-phy0  # create wpan0 attached to wpan-phy0
ip link set wpan0 address a0:a0:a0:a0:a0:a0:a0:a0
ifconfig wpan0 up

# Set the PAN ID, channel and short address.
# This is a temporary hack. iz assoc eventually be used.
export PID_FILE=/var/run/izpid
izcoordinator -i wpan0 -d 1 -s 2 -p 777 -c 11 -l lease &
sleep 1

# Create a 6LoWPAN link and set its hardware address
ip link add link wpan0 name lowpan0 type lowpan
ip link set lowpan0 address a0:0:0:0:0:0:0:2
ifconfig lowpan0 up
```
Other Support for IEEE 802.15.4 and 6LoWPAN
Other OS's

- Contiki OS
 - Adam Dunkels
 - Sweedish Institute for Computer Science
 - Author of **uIP** and **lwIP**
 - Supports IPv6, 802.15.4, and 6LoWPAN
 - Runs on small to tiny CPUs
 - MC1322x, AVR, 6502, others
 - Not real-time, but uses **protothreads**
 - BSD License
Other OS's

• TinyOS
 • Maintained by the TinyOS Alliance
 – Started with UC Berkeley, Intel Research, and Crossbow Technologies
 • Runs on slightly larger hardware than Contiki
 – MSP430, ATmega128, XScale PXA271
 • Applications written in nesc, similar to C
 – Custom GNU Toolchain
 • Has support for Beacon-Enabled Networks
Demonstration
Demo

• Hardware Used
 • Node 1
 - BeagleBone
 - Microchip MRF24J40MA
 - Maxbotix Ultrasonic Range Finder (HRLV-EZ0)
 • Node 2
 - Laptop
 - Redwire Econotag
Demo

- Microchip MRF24J40MA
 - FCC, IC, ETSI certified (US, Canada, Europe)
 - Fully integrated module, only needs SPI connection
 - 2.4 GHz, 0 dBm (1 mW)
 - $10 USD for single units
 - Supported by Mainline kernel as of 3.7-rc1
Demo

• Redwire Econotag
 • Mariano Alvira, Redwire LLC
 – http://www.redwirellc.com/
 – http://mc1322x.devl.org/
• Based on Freescale MC13224
 • ARM7 SOC
 • Integrated 802.15.4 radio (4.5 dBm)
 • JTAG and console over USB (FTDI)
 • Debug with OpenOCD and GDB
 • Well supported by Contiki-OS
 • Firmware to connect to the Linux 802.15.4 Serial driver.
Demo

- BeagleBone
 - Texas Instruments / CircuitCo
 - AM3359, ARM Cortex-A8 SOC
 - 3.3v I/O, 0.1” spaced connectors
 - Boots mainline kernel +patches
 - Ethernet, USB host and device
 - Micro SD
 - Great for breadboard prototypes
 - http://www.beagleboard.org

Image from Beaglebone SRM
Demo

- Application
 - Security System
 - Ultrasonic range sensor attached to the BeagleBone
 - Maxbotix HRLV-EZ0, connected to UART2
 - Alarm console on PC
 - Set, Unset, Alarm indication
 - When alarm is set, and range sensor detects a person, the alarm trips.
 - Alarm is indicated until reset
 - UDP packets send commands and indicate alarm trip.
Demo

- Sensor Board
 - Adafruit Proto Cape Kit
 - Microchip MRF24J40MA
 - Maxbotix HRLV-EZ0
 - LM7805 (5V regulator)
 - Battery Snap Connector
Demo

• Installed
 • Mounted in an Altoids tin over the door behind you.
 • Mounted at angle, sensor facing down.
 • A piece of cork holds the tin open at the right angle.
 • (picture is from below, looking up at it).
Demo

- Controller GUI
 - Alarm not tripped
Demo

- Controller GUI
 - Alarm tripped
 - Current return is in inside range threshold
Demo

• Source Code
 • Mainline Kernel 3.7.0-rc2 (PC)
 • BeagleBone kernel from:
 - https://github.com/beagleboard/kernel/tree/3.7
 • Resources downloadable from:
 • Tony Cheneau's 6lowpan and ieee802154 fixes
 • Source code for sensor and controller software
 • Kernel device tree mods for BeagleBone
 • Hacky board stub file (mrf24j40 driver has no DT support)
 • Hack to slow down the Econotag TX (since we don't do acks).
Lessons Learned

- 6LoWPAN requires all fragments of a single IPv6 packet to be received at the same time.
 - No re-transmission request at the 6LoWPAN layer.
 - MAC-level acknowledgement and retransmission is really needed to make it work.
- Accounting for different speeds of hardware is important.
- The mainline BeagleBone kernels are experimental!
 - It's hard to be on the bleeding edge of two things at once.
Acknowledgements

- Presentation Reviewers:
 - Tony Chenau
- #beagle (freenode) help desk:
 - Koen Kooi
 - Matt Porter
 - Hunyue Yau
 - Matt Ranostay
 - Pantelis Antoniou
- Hardware Support:
 - Aaron Wiginton
Signal 11
SOFTWARE

Alan Ott
alan@signal11.us
www.signal11.us
+1 407-222-6975 (GMT -5)