

Solving Real-World Real-Time Scheduling
Problems With RT_PREEMPT and

Deadline-Based Scheduler

Xi Wang

Broadcom Corporation

Questions, Comments:
xiwang@broadcom.com
peknap@yahoo.com

mailto:xiwang@broadcom.com
mailto:peknap@yahoo.com

Introduction
● Higher degree of processor sharing in embedded

systems
– Before: Several task specific processors with dedicated

tasks, often running without OS
– Now: Multiple tasks running on powerful application

processors, including some DSP tasks
● E.g. making a video call from a mobile phone
● Common tasks include media tasks for audio/video streams,

network traffic, wireless and security, etc.
● Expectations of real-time scheduling have become

higher
– Multiple low latency tasks with significant CPU time usage is

more challenging and more interesting
– Maintaining low latency and reaching high CPU utilization are

often conflicting goals for traditional strict priority or rate
monotonic scheduling

Introduction
● This talk

– Part 1: Meeting real-time requirements of both VoIP
and packet forwarding tasks by modifying Linux
priority model with RT_PREEMPT

– Part 2: Take it further, how to make everyone happy
in a three class scheduling problem (not yet a
solution, but sharing thoughts)

Introduction
● System in background

– Home gateway device with three major classes of
tasks: Packet forwarding, VoIP and Applications
such as UI

● VoIP: Real-time
● Packet forwarding: Even more so – low latency tolerance

due to limited Rx buffers in the embedded device
● Warning: UI application can be

 hard read-time
– User's patience runs out →

computers destroyed
● If in doubt, search Internet

VoIP and Packet Forwarding
● Problem for Part 1

– When system is loaded with heavy network
traffic,VoIP tasks cannot get enough CPU cycles

● Incomplete solution
– Make voice threads run at real-time class

● Despite that they can preempt other normal priority
kernel threads at will, network traffic still has higher
priority

● Complete understanding the behavior of
softirq is the key to solve the problem

Native Linux Priority Model

● Variable priority of softirq
– Very high when lightly loaded –

preempt everything except hard
irq

– Low, running in ksoftirqd kernel
thread when oversubscribed

● The goal is to provide low
latency to softirq tasks without
starving other tasks
– The downside is that there is no

consistent priority model

normal user
processes and
kernel threads

softirq

IRQ

ksoftirqd

tasklet

real-time user
processes and
kernel threads

Packet
Forwarding

VoIP

App

workqueues

timers

Undesirable Default Priority Model
● In default Linux priority model, no kernel

thread/user process can have higher strict
priority over network packet processing

– softirq is thread like but not under the control of
process scheduler

– Moving voice processing to softirq is not practical,
nor does it give voice tasks the highest priority

● It could run in ksoftirqd too
– Moving to hard irq might work as an ugly solution,

but nobody would like the side effects
– Layered OS is possible, but overkill

● The problem cannot be solved without
changing this model

Changing the Priority Model
● The solution: Always run softirq in kernel

thread context
– Now a feature in RT_PREEMPT

● Called “preempt softirq” in Kconfig, but better described
as running softirq in thread context

– This code is less-known and small, but important
● First developed by Ingo Monlar's as an independent

patch. Later included in RT_PREEMPT. Some of the
RT_PREEMPT features are mainlined, but not this one
(as of 2.6.38)

● With this change, traditional softirq no longer
exists softirq tasks always run in ksoftirqd̶

Real-time user
processes and
kernel threads

Normal user
processes and
kernel threads

IRQ

VoIP

App

ksoftirqd
Tasklet

Packet
forwarding
(NetRx/Tx)

workqueues

Timers

Changing The Priority Model

normal user
processes and
kernel threads

softirq

IRQ

ksoftirqd

tasklet

real-time user
processes and
kernel threads

Packet
Forwarding

VoIP

App

workqueues

timers

Under The New Priority Model
● Moving softirq to a process context and using

real-time scheduling classes made a working
system

– VoIP tasks are always happy
● Higher strict priority over everything except hard irq

– Packet forwarding is mostly happy
● Lower priority than VoIP but won't be affected by

anything else

On softirq
● My observations on softirq

– Original purpose is trying to do everything in a non-preemptive kernel
● Defer hard irq processing
● Enable high priority low-latency tasks, and avoid starving other tasks
● Provide preemption when kernel preemption is not enabled/supported

– Kernel process scheduling has included most of these features over the
years

– Cost of softirq
● Priority jumps up and down
● Having both Interrupt context and non-interrupt context can create problems

– Inflexible binding of spin lock ↔ softirq, mutex ↔ process
– Feature creep, complex protocols in net rx/tx are not necessarily irq related

● Phase out softirq?
– This gets the author's vote, but Linux platforms are diverse, and it may be

bad for other systems
● At least packet forwarding is not worse, reporting that running Net Rx/Tx in process

context resulted in similar network packet throughput
– Keep hard irq, everything else in the process context under the control of

process scheduler
● Some special mechanisms and optimizations for ultra low latency tasks

Next Step
● Make it even better – problem for Part 2
● No compromise, make everyone completely

happy
– Meet strict performance requirements of both VoIP

and packet forwarding tasks without one having the
priority over the other

– Provide latency guarantees to UI applications too, so
users can enjoy a responsive UI

Next Step
● Disclaimer: I would like to share some

thoughts for which I haven't experimented
– Me and process scheduler code

● Tried an early version of SCHED_DEADLINE, but didn't
give it enough time to see results

● Tried to write my own deadline based scheduler
– Not necessarily to make it a final product, but to better

understand the problem. Didn't find enough time to complete
● Relation between this talk to SCHED_DEADLINE

– Overlapping parts can be equivalent, need to do more
investigations to find out all the similarities and differences

● In next pages
– A bucket model from me
– A proposed scheduling mechanism
– Characteristics, problems and more features to add

Understanding Requirements
● Real-time requirements cannot be described with

simple priorities
– Max latency

● Packet forwarding: 1 ms
– Limited Rx buffers + wirespeed forwarding

● VoIP: 10 ms class
– Protocols, DMA

● Application: 500 ms class
– CPU time asked

● Packet forwarding: 0%~100%
● VoIP: 0%~50%
● Application: 0%~100%

– CPU time “priority”
● Packet forwarding: Lower than VoIP, higher than application
● VoIP: Gets as much as needed
● Application: Shouldn't be starved (guarantee > 5%)

Making It Better
● QoS process scheduling?

– Detailed requirements on multiple aspects are
similar to network QoS

– Both network QoS and process scheduling are
related to resource allocation and queuing

● CFS ~ Fair Queuing

QoS Scheduling
● Review of existing mechanisms – making everyone

happy is difficult
– Strict priority can starve tasks

● Another side effect is that priority inversion leads to deadlocks
– CFS provide good CPU time allocation, but no latency

guarantee
– Real-time group scheduling can be a solution, but with

some drawbacks
● Global scheduling period needs to be aligned with the most

latency sensitive task, very frequent task switching possible
● Fixed CPU time allocation

● To solve the three-class QoS scheduling problem
– Deadline-based scheduling as the main component,

complimented by some additional mechanisms

QoS Scheduling
● Background on deadline-based scheduling

– For batch processing, clear model for Earliest Deadline
First (EDF) scheduling

● N tasks, each with known deadline
● Always pick the task with earliest deadline when rescheduling
● Optimal – guarantee that every job meets its deadline if

schedulable
– Extended to dynamic scheduling with recurrence

● Regenerate each task at a certain period, and run the
classical EDF in each period

– Alternative methods may exist
– See SCHED_DEADLINE and related papers

● http://gitorious.org/sched_deadline/pages/Home
● In this talk we use a continuous bucket model

instead
– Turns out things can work without scheduling period

Bucket Model

Switch

CPU can drain any bucket at anytime,
 but only one at a given moment

Each task can be described with
 inflow rate and bucket size

● It's simple
– Drain the right bucket at the

right time, do not let any
bucket to overflow

– Modeled after producer →
buffer → consumer problems

● Can be reversed to prevent
underflow for media applications

● Continuous model
– No scheduling period or task

recurrence period, tasks as
incoming streams

● Background
– Borrow concept from network

QoS
– Generic model, not limited to

deadline scheduling

QoS Scheduling
● Mapping tasks into bucket model

– The first parameter, deadline or buffer overflow time often
already exists in real world

● Packet forwarding: ~1 ms
● VoIP: ~10 ms
● UI Application: ~500 ms (patience runs out = buffer overflow)

– Two independent parameters
● Assuming constant inflow rate and bucket size
● Bucket Size, Inflow Rate → Deadline
● Inflow Rate, Drain Rate → CPU Time Allocation
● Only two independent parameters in this model, e.g. bucket size

can be normalized out. I use
– Bucket fill time (latency)
– Bucket drain time (bandwidth, determines CPU time allocation

when combined with bucket fill time)
● Classful task scheduling

– No need to map deadline parameters to every task, deadline scheduling
should happen at task group level

Deadline Based Scheduling Algorithm
● Have bucket model, will schedule
● When to reschedule is important

– Multiple valid solutions to meet the goal
– Cannot always run earliest deadline first in a continuous

model – results in infinitely high task switching frequency
● A straightforward first step design with lazy switching

– Mechanism A
● Triggered: When one of the inactive task's bucket is full – deadline

reached
● Action: Switch to that task

– Mechanism B
● Triggered: When current task's bucket is empty

– Indicated by current finishes/blocks
– As calculated by bucket model, but the task hasn't finished – timeslice overrun

● Action: Switch to lower scheduling domains or idle task

Lazy Switching Bucket Scheduler Example

Task A

Task B

Lower Scheduling
Domain / Idle Task

Bucket Fill /
Active Task

Time

0

1

1

0
Active

Active

Active

Discussion
● Characteristics, good or bad

– Adaptive time slice
● If anyone familiar with image processing, this should be

comparable to dithering, half-tone pattern or error diffusion
– Each task is protected with latency and CPU time

guarantee, won't be affected by other tasks
– Bad mode / pattern possible

● When two classes with close or equal parameters and both of
their bucket is about to overflow, there will be very frequent
task switching / thrashing

● Need to be prevented / mitigated with additional mechanisms
● One possible solution is to look ahead to one or more future

deadlines and switch before bucket is full
– Overheads are higher than most schedulers – but we

probably only need a handful of QoS scheduling classes
in a given system

Discussion
● Features to add

– SMP ignored in this talk, should be SMP aware
– Soft real-time features

● What was discussed before made fixed CPU time
reservations, sometimes we want to consider both worst
case and average case, where tasks do not use up all
their CPU time allocations

– Two sets of bucket parameters, one for worst case guarantee,
one for more optimistic situation

– Allow each task to have two taps to receive CPU time, a
primary tap at deadline scheduling domain and a second tap at
lower scheduling domain, e.g. CFS

Conclusion
● A good time to experiment with process

schedulers
– Task scheduling can cause a surprising number of

problems in modern embedded systems
– Don't be afraid to work on it. Task scheduling may

be less up to date as you think – in actual OS or
academia

● Process scheduler is deeply buried in OS core and rarely
gives trouble in desktop systems

● Not very easy to experiment and do research on
– Many ideas should have been discussed, but not

necessarily connected to real OS
– With pluggable scheduler design in newer Linux

kernels, it is now relatively easy to experiment

Conclusion
● Do we really need more scheduling

mechanisms?
– More challenging for embedded systems

● More real-time requirements, less powerful processors,
one-size-fits-all may not be enough

– Less challenging for embedded systems
● Scalability is not a must
● OK to be mission specific

– Useful even if not mainlined
– Answer is probably yes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Native Linux Priority Model
	Slide 7
	Slide 8
	Priority Model After The Proposed Change
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

