m MENDER.io
00

Deploy Software Updates for Linux Devices

Develop your Embedded Applications Faster:
Comparing C and Golang

Marcin Pasinski
Mender.io

My view on C vs Go

e |think Gois great and very
productive programming language

e [texcelswhen developing
networking code

e |'mnot consideringit a
replacement or competitor for C

e Among the other things garbage
collection alone ensures that

What is Go

Why did we choose go
Go basics

Code samples

Demo

& Northern.tech

e Marcin Pasinski
— .
| &2 MENDER.io
o 10+ years in software development o0®
o M. Sc., Electronics and Telecommunication
o marcin.pasinski@northern.tech

OTA updater for Linux devices
Integrated with Yocto

Open source (Apache v2 license)
Written in Go

“CFENngine
Configuration management tool

Open source (GPL v3 license)
m WritteninC

What is Go: timelines

Robert Griesemer, Rob lan Taylor
Pike and Ken Thompson started GCC
started sketching front end

Public open Govl
source released

September 21, May November 10, March 28, August 24,
2007 2008 2009 2012 2017 N2

What is Go?

e “Gowas born out of frustration with existing languages and environments for
systems programming.”

e “One had to choose either efficient compilation, efficient execution, or ease of
programming; all three were not available in the same mainstream language.”

https://golang.org/doc/faq

OO

Language requirements

1. “External impact”
o Sizerequirements on device
o Setup requirementin Yocto Project
o Possibility to compile for multiple platforms

2. “Internal considerations”

Competences in the company

Code share/reuse

Development speed

Access to common libraries (JSON, SSL, HTTP)
“Automatic memory management”

“Security enablers” (buffer overflow protection, etc.)

O O O O O O

Language comparison

Size requirements in devices Lowest Low (1.8MB more) Low (2.1 MB more, however will increase
with more binaries)

Setup requirements in Yocto None None Requires 1 layer (golang)*

Competence in the company Good Have some long time users Only couple of people know it

Buffer under/overflow protection None Little Yes

Code reuse/sharing from CFEngine Good Easy (full backwards compatibility) Can import C AP

Automatic memory management No Available, but not enforced Yes

Standard data containers No Yes Yes

JSON json-c jsoncpp Built-in

HTTP library curl curl Built-in

SSL OpenSSL OpenSSL Built-in NG

* Go is natively supported by Yocto Project from Pyro release (Yocto 2.3) eo0

Yocto build comparison

C C++
Pure image size 8.4MB 10.2MB
Size with network stack 13.4MB 15.2MB

(curl) (curl)
Shared dependencies Yes Yes
Extra Yocto layer needed No No
Deployment complexity Binary Binary

* Required some changes to upstream Yocto layer
** Go is natively supported by Yocto from Pyro release (Yocto 2.3)

C++/Qt
20.8MB*

20.8MB*

Yes
Yes

Binary + Qt

Go
14.6MB

14.6MB

No/Maybe

Yes

Binary

Why did we pick up Go?

1. Golang has lots of core language features and libraries that allows much faster
development of applications.

2. Thelearning curve from C to Golangis very low, given the similarities in the language
structure.

3. Asitisacompiled language, Golang runs natively on embedded devices.

4. Goisstatically linked into a single binary, with no dependencies or libraries required at
the device (note that this is true for applications compiled with CGO_ENABLED=0).

5. Go provides wide platform coverage for cross-compilation to support different
architectures

6. Similarinsize with static C binaries, Go binaries continue to get smaller as their compilers
get optimized.

7. Boththeclient and the backend are written in the same language

Govs C:size

f \ s N
package main #include <stdio.h>
func main () {
int main (void)
println("hello world") {
} printf ("hello world\n");
t 0;
e $gobuild) e
o 938K - -
e $gobuild-ldflags ‘-s -w’ e gccmain.c
o 682K o 8,5K
e $gobuild &strip e I|dda.out
o 623K o linux-vdso.so.1
p ~ o libc.so.6
package main o /lib64/ld-linux-x86-64.s0.2
import A\Y fmt ” [gCC -StatiC main.C
. o 892K
func main () { . . .
‘ e gcc-static main.c & strip
fmt.Println ("hello world") o 821K
& } J
e $gobuild

o 1,5M N3

Go is fully garbage-collected

2. Godeclaration syntax says nothing about stack and heap allocations making
those implementation dependant ($ go build -gcflags -m;)

Fast compilation

Go provides support for concurrent execution and communication

The speed of developer is most important in most cases and Go really excels
here

=

ok w

The Computer Language

Benchmarks Game

https://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=go&lang2=gcc

https://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=go&lang2=gcc

Go basic features

Standard library
Tooling

Compilation
Concurrency

Linking with C and C++
Code samples

Standard library

e Standard library (https://golang.org/pkg/)
o io/ioutil/os
flag
net (http, rpc, smtp)
encoding (JSON, xml, hex, csv, binary, ...)
compress and archive (tar, zip, gzip, bzip2, zlib, 1zw, ...)
crypto (aes, des, ecdsa, hmac, md>5, rsa, shal, sha256, sha512, tls, x509, ...)
database (sql)
regexp
sync and atomic
unsafe and syscall

O 0O 0O O 0O 0O O O O

https://golang.org/pkg/

O O 0O O o 0o O O O

fmt

test

cover

pprof

doc

get

vet

race detector
and many more

Compilation

e Compilers
o The original gc, the Go compiler, was writtenin C
o Asof Go 1.5 the compiler is written in Go with a recursive descent parser
and uses a custom loader, based on the Plan 9 loader
o gccgo (frontend for GCC; https://golang.org/doc/install/gccgo)
m gcc/supports Go 1.8.1

e Compilation
o fast (large modules compiled within seconds)
o single binary file (ho dependencies, no virtual machines)
m from Go 1.5 possible to create shared libraries and dynamic linking but
only on x86 architecture
o makefile
(https://github.com/mendersoftware/mender/blob/master/Makefile) e

https://golang.org/doc/install/gccgo
https://github.com/mendersoftware/mender/blob/master/Makefile

Cross compilation (https://golang.org/doc/instalI/source#environment)

$GO0S / $GOARCH | amd64 | 386 | arm | arm64 | ppc64le | ppc64 | mips64le | mips64 | mipsle | mips

android X

darwin X X X

dragonfly X

freebsd X X X

linux X X X X X X X X X X
netbsd X X X

openbsd X X X

plan9 X X

solaris X

windows X X

Debugging

o Gdb
e Delve (https://github.com/derekparker/delve)

e Unit tests

e Benchmarks

e Allyouneed:
o add” test” tofilename
o add “Test” to function
o import “testing”

4 N
package main

1, ¢ bool

e Variable declarations var &,
func main () {

var prague int
var elc string = “linux”
var a, s, d = true, false, “data”

f =1

e Basictypes
o bool U J

string

int, int8, int16, int32, int64

uint, uint8, uint16, uint32, uinté64

byte //alias for uint8

rune //represents a Unicode point; alias for int32

float, float64

complex6é4, complex128 N2

O O O 0O O O O

Functions

Functions
o takezeroor more arguments
o arguments pass by value
o multiple return values

-

func div(x, y int) (int, error) {
if v == 0 {
return 0, errors.New("div by 0")

}

return x / y, nil

func main () {

fmt.Println(div (4, 0))

Structures and methods

Structs
o Structis collection of fields
Methods
o Functions with receiver
argument
o Can be declared on non-struct

objects

type Point struct {
X int

Y int

type Square struct {
Vertex Point

Size int

func (s Square) area() int {

return s.Size * s.Size

func (s *Square) setPoint (p Point)

s.Vertex = p

U

{

Interfaces

e |[nterfaces
o Set of method signatures
o Implemented implicitly
m noexplicit declaration
m no “implements”
e Decoupled definition and
implementation
e Empty interface interfacef}

-

type Printer interface {

Print () (string, error)

type myType int
func (mt myType) Print () (string, error)

return “this is my int”, nil

main () {
var p Printer = myType (1)
i.Print ()

}

_

{

Concurrency

e Goroutines
m Functions that run concurrently with other
functions
m Onlyfew kB initial stack size (2kB)
m Multiplexed onto OS threads as required

e Channels
m Used for sending messages and
synchronization
m Sends and receives block by default
m Canbe unbuffered or buffered

Concurrency cont’d

e Goroutines
o go func()

e Channels
o c¢:=make(chan int)

-

}

package main

func main () {

:= make (chan string)

messages :=
go func () { messages <- "ping" } ()
select {

case msg := <- messages:

fmt.Println (msqg)
case <- time.After (time.Second) :

fmt.Println ("timeout")

default:
fmt.Println ("no activity")

time.Sleep (50 * time.Millisecond)

}
N

C code inside Go

e CGO (https://golang.org/cmd/cgo/)

©)

allows Go to access C library
functions and global variables
imported C functions are
available under virtual C
package

CGO_ENABLED

There is a cost associated with
calling C APIs (~150ns on Xeon
processor)

4)

/*
#cgo LDFLAGS: -lpcap
#include <stdlib.h>

#include <pcap.h>

*/

import "C"

func getDevice () (string, error) {
var errMsg string
cerr := C.CString(errMsqg)
defer C.free(unsafe.Pointer (cerr))
cdev := C.pcap lookupdev (cerr)
dev := C.GoString (cdev)

return dev, nil
U J

https://golang.org/cmd/cgo/

C++ code inside go

-~

// helloclass.cpp
std::string HelloClass::hello () {

° SWIG return "world";

o Simplified Wrapper and |
Interface Generator

o Used to create wrapper code // helloclass.h
to connect C and C++ to other class HelloClass
languages {

o http://www.swig.org/Doc2.0/ prbties |
GOhtml std::string hello();

// mylib.swig
gmodule mylib
% {

#include "helloclass.h"

(o)

\Z

http://www.swig.org/Doc2.0/Go.html
http://www.swig.org/Doc2.0/Go.html

Shared Go libraries

e N\
// package name: mygolib
e Possible from Go 1.5 package main
o -buildmode argument
m archive import HCH

import "fmt"

m c-archive

m c-shared
//export SayHiElc

m shared
func SayHiElc (name string) {
mexe fmt.Printf ("Hello ELC: %s!\n")
. . mt.rrin (S @] . ©S.\n", name
e ~ go build -buildmode=shared -o :
myshared
e ~go build -linkshared -o app func main()
mYShared // We need the main for Go to

// compile C shared library
}

_) ™

Shared C libraries

4 I
// mygolib.h
e ~go build-buildmode=c-shared -o typedef signed char GoInts;
. . typedef struct { char *p; GoInt n; }
mygolib.a mygolib.go GoString;

. extern void SayHiElc (GoString p0) ;
e ~gcc-omyapp myapp.c mygolib.a
// myapp.c

#include "mygolib.h"
#include <stdio.h>

int main () {
printf ("Go from C app.\n"):;
GoString name = {"Prague", 6};

SayHiElc (name) ;
return 0;

Embedded Go

e Heapvsstack
o go build -gcflags -m
o ./main.go:17: msg escapes to
heap
e Unsafe code
o C:*uint8_t*)0x1111 = OxFF;
o Manipulating hardware
directly is possible with GO,
but it has been made
intentionally cumbersome.

-~

file, @ := os.OpenFile("/dev/gpiomem",
0s.0 RDWR|os.O SYNC, 0);
mem, := syscall.Mmap (int(file.Fd()),
0x20000000, 4096,

syscall.PROT READ|syscall.PROT WRITE,
syscall.MAP SHARED)

header :=
* (*reflect.SliceHeader) (unsafe.Pointer (&mem))

memory =
([]uint32) (unsafe.Pointer (&header))

-

Our experience with Go: cons

1. Messy vendoring of 3rd party libraries
2. Quality of community libraries varies a lot
3. Some issues with Yocto Go layer at the beginning

o all gone after recent efforts of integrating Go with Yocto
4. While using cgo all the easiness of cross-compiling is gone

Our experience with Go: pros

w N

oA

Easy transition from C/Python (took couple of days to be
productive in Go)

Very nice tooling and standard library

Some tasks exchange between backend and client teams
happened, but we've been able to share lot of tools (Cl, code
coverage)

We can share some code between the client and the backend
Really productive language (especially when developing some kind
of network communication)

Forced coding standard so all the code looks the same and is easy
toread

Demo

e Yocto
e Mender.io
e ThermoStat™
o https://github.com/mendersoftware/thermostat

https://github.com/mendersoftware/thermostat

