
Open First

Simplify & reuse driver code

with regmaps

Ioan – Adrian Ratiu
adrian.ratiu@collabora.com

2

Overview

● By whom and for whom

● Problem statement

● Solution

● Two case studies

● Way forward

3

Who
am I

● Consultant sr. sw. engineer

● Working on

- HW bringup

- Device drivers

- Embedded Linux distros

- Various other stuff

4

Who
is this

for

● Driver developers

● Linux developers

● Those wishing a decrease in

driver proliferation

● Those wanting better drivers /

less bugs

5

Not a silver bullet

- This is a practical solution to a common problem

- Based on repeating patterns seen in drivers

- Linux kernel upstream friendly

- Pros / cons and trade-offs to be aware of

- Purpouse: avoid duplication and/or wheel-reinvention

- This will not fix all bugs by itself :)

6

The problem

HW integration levels

Vendor 1 IP Vendor n IP

HW / SoC integration

Software / driver development

...

7

The problem

HW integration levels

Vendor 1 IP Vendor n IP

HW / SoC integration

Software / driver development

...

v1, v2, v3 ... v1, v2, v3 ...

v1, v2, v3 ...

8

The problem

HW IF changes between revisions

- Vendors focused on optimizing HW design

- HW programming protocols tend to follow standards

- Big breaks usually require new separate drivers

not on keeping HW programming IF compatibility

so big breaking changes are rare

- Small incremental HW IF breakages are common
and compensated for in drivers / software

9

Most common annoyance

Register shuflling

- Breakages may be necessary or unavoidable

- Breakages may also be due to non-technical reasons

- Can be big or small

- Drivers can resort to bit manipulation tricks

Eg new HW is capable of 8K video decoding requiring bigger resolution reg fields

A total register shuffle may make HW hard to recognize

or add own abstractions on top of the bit magic

10

The solution: regmap

Upstream Linux kernel subsystem

Mature, stable, introduced cca 2010

Initially for non-memory mapped HW bus accesses

MMIO support soon followed (cca 2012)

Can be used to build abstractions on top of HW registers

Regmap field API (cca 2013) for bit-level reg access

11

00000000
11111111
22223333
44455678

11110000
22227733
33333333
55444688

v1 hwreg v2 hwreg

Reg1

Reg2

Reg3

Reg4

00000000111111112222333344455678 11110000222277333333333355444688

MMIO

Regmap field API

 00000000111111112222333344455678 11110000222277333333333355444688
Field 1 Field 2 F3 F4 F5 87F6 9 F2 F1 F3 F5F6Field 4F8 F97

Driver programs the HW using the field API
No need to worry about reg layout differences

12

v1, v2, v3 hwregs

 Gstreamer, ffmpeg, etc

Video4linux API

userspace

V4l2 subsystem

Kernelspace

Device driver

V4l2 bindings

Core driver logic (eg h264, h265 codecs)

Regmap

v1 fields v2 fields v3 fields

HW

Regmap fields
abstraction layer between
core driver logic and HW

Drivers focus on their logic
without having to account
for different HW layouts

Replace v4l2 with any
other subsystem or

userspace

13

Regmap field configuration (private register layout)

Configure how regs look and behave.

Field configuration
Struct naming is unfortunate:
 reg_field (cfg) vs regmap_field (API)

Fields,
Fields,
Fields,
...

For two HW
revisions

14

Regmap field configuration (HW programming API for driver)

Define unified API
Names can differ from those in reg cfgs

Associate API with cfg

(to do the association, the HW revison needs to be known at runtime)

Program HW via the API in driver(s)

For a more detailed introduction please visit my blog post :

https://bit.ly/3nf0IJt

https://bit.ly/3nf0IJt

15

Pros / Cons (you decide which is which)

- Linux (only) kernel upstream mechanism

- Many optional features (bounds checks, caches, locks, callbacks, debugfs, etc)

- Unified reg layout abstraction implementation

- Removes boilerplate from driver code & make code reuse easier

- Easy to add new HW revisions to a driver

- Field config closely follows HW register datasheet info

- More verbose than direct bit-manipulation

- Low microsecond perf impact (depending on hwreg speed)

16

Case study 1:

Synopsys MIPI-DSI host controllers

17

MIPI-DSI in a nutshell

- Simple HW implementation (small, cheap, few wires)

- Popular in mobile/gaming, automotive, IoT, maker etc

- Spec governed by MIPI alliance, not public (v1.0 – v1.31)

- Silicon IP vendors (like Synopsys) implement spec in DSI controllers

- SoC vendors (like NXP, STM, RK) integrate controller IP versions

MIPI-DSI
LCD

display

Image / Graphics
Processing

Unit

Image data MIPI-DSI
Host

Controller

High speed bit clock (Mhz or Ghz)

Data lane 0 (mandatory, reversible)

Data lane N (optional)

...

Host device

18

MIPI-DSI – problem & solution

- HW IF layout breakages mostly due to MIPI-DSI spec changes

- HW functionality & programming mostly the same between revs

- Each SoC vendor provides own separate drivers

- Kernel upstream driver supports v1.30 & v1.31 with bit-manipulation

- Wanted support for v1.01 in i.MX6

- Bigger 1.0 vs 1.3 layout divergence made bit-manipulation hard

- So a regmap field layer was introduced :)

(STM & RK SoCs)

Link to patch series v9: https://patchwork.kernel.org/cover/11596301/

Blog post on the subject:
https://bit.ly/3nf0IJt

https://patchwork.kernel.org/cover/11596301/
https://bit.ly/3nf0IJt

19

MIPI-DSI – Challenges and results

- Regmap design & implementation was easy

- Testing on multiple SoCs with displays was hard (lack of HW)

- Big thank you to all those who helped testing & debugging

- Kernel upstream driver needs some unrelated improvements

- Unfortunately few people have time to invest (myself included)

- Hope the series gets picked up again and driven to inclusion

20

Case study 2:

Verisilicon “Hantro” video codecs

21

 Gstreamer, ffmpeg, etc

Video4linux API

userspace

V4l2 subsystem

Kernelspace

Device driver

V4l2 bindings

Regmap

Core driver logic (eg h264, h265 codecs)

G1 fields G2 fields VC8K fields

Complex HW, many features and
corner-cases, programmed via

hundreds of registers

Only the video bitstream is
standardized and is also complex

(h264, h265, VP8/9, etc)

Verisilicon decided to merge its
two separate G1 & G2 decoders
into one chip, named VC8000

Register layouts took a heavy hit
but HW functioning remained

mostly the same

Hence the regmap layer :)

HW video codecs
in a nutshell

G1 core G2 core

i.MX8m and other SoCs another SoC
VC8K core

G1 core G2 core

22

Hantro codec – problem & solution

- Upstream driver only supported a subset of G1 and G2 features

- Idea: Introduce regmap layer to also support newer VC8K chips

- Performance is critical

- Battery consumption must be minimized / CPU load optimized

● Needs to decode hi-res videos at high framerates in parallel

● Regmap fields added a constant ~ 20 us of register IO overhead per frame

● Acceptable considering VPU HW decoding takes up to 20 ms per frame

(much depending on HW and frame resolution)

● This is why upstream driver did explicit relaxed & non-relaxed MMIO

23

Hantro codec – Challenges and results

- Regmap design & implementation was (again) easy

- Figuring out differences between new & old chips was difficult

- Could not measure relaxed vs non-relaxed MMIO impact

- Hantro driver still has own ‘struct hantro_reg’ abstraction

- Hantro still has a ‘driver within driver’ due to layout divergence

Patch series should be posted publicly before this presentation

● Extending regmap API to allow relaxed MMIO is easy

● Hard to justify upstream API addition without good measurements

(time & interest required to convert the rk3399 sub-driver to regmap)

24

Way forward

Regmaps are widely used, but not to abstract hwreg layouts

More drivers can be converted / boilerplate removed

Helpers could be added to reduce init verbosity

Got upstream maintainer buy-in for the above two use-cases

Room for regmap field API standardization

For similar HW, abstraction layers / libs can be created
(eg VPU decoder lib with unified virtualized HW interface)

25

Thank you

Message {
 config {
 priority: "high"
 body: "Collabora is hiring" // Many open
positions
 recipient: "you" // Please
join us
 calltoaction: "http://col.la/join"
 }
}

	Slide 1
	Slide 2
	Developing better technologies_clipboard0
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

