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Who am I?

● Long time Linux user (over 20 years)

● Have done Linux software development for over 15 years

● Have been doing embedded Linux development on and off since the start of my
professional career

● Have previously done some kernel driver development, wrote and maintain the Linux
CompactPCI hotswap framework

● Have been using OpenEmbedded / Yocto Project for close to three years on several
projects ranging from small sensor style devices to rack mount network equipment.

● Currently working for Konsulko Group providing professional services

● Long time conference attendee, first time presenter
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Caveats

● While I consider myself experienced with using
OpenEmbedded, I’ve still got lots to learn!

● My apologies in advance if some of this seem obvious.

● I’m going to gloss over some details, as I’d like to get to the
issues I feel you might not be aware of.

● Any recommendations I make are based on what has worked
for projects I’ve worked on, and on discussions with coworkers
and various community members.
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Agenda

● Quick recap of OpenEmbedded & The Yocto Project

● Starting a project with OpenEmbedded

● Builds

● Packaging and Upgrade

● Workflow

● Security

● Support
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OpenEmbedded & The Yocto Project in 1 Slide! 

● OpenEmbedded (OE) is a build system and associated
metadata to build embedded Linux distributions.

● The Yocto Project is a collaboration project that was founded in
2010 to aid in the creation of custom Linux based systems for
embedded products. It is a collaboration of many hardware and
software vendors, and uses OpenEmbedded as its core
technology. A reference distribution called “poky” (pock-EE) built
with OE is provided by the Yocto Project to serve as a starting
point for embedded developers.
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An aside about naming

● People do and will get the naming wrong

● A typical example is referring to “Yocto Linux”

● My recommendation is to pick your battles...
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Starting a Project

● No matter the target, you’ll need to start by setting up your OpenEmbedded
base layers, and then add any required BSP layers or layers for specific
functionality

●  You can do this by either:
– Piecing together oe-core and bitbake repositories

– Using the all-in-one Yocto Project poky repository

● Then add additional layers on top
– Usually starting with your own layer to customize distribution settings, tweak package

recipes, etc.

● Lastly customize the target image
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Layer issues

● If you weren’t planning on using anything from poky, it seems reasonable to
just use bitbake and oe-core by themselves…

● This can work, but many BSP layers rely on the linux-yocto kernel recipe from
poky, making this path more difficult

● It is slight heresy to some in the OE community, but I lean towards using
poky.git, as it’s one or two repos less to clone and track

● Branches can be an issue with non-core layers!
– They may not have branches for different releases of OE (or at all)

– You may have to mix and match, which can require experimentation and tweaking
recipes
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Layer issues continued

● There are a wide variety of layers available

● A good resource is the OpenEmbedded Metadata Index , which
allows searching for layers and recipes

● Be aware that layer quality varies widely for layers not
maintained by OE, the Yocto Project, or a vendor.

● As an example, there are instances of multiple layers existing to
support certain SoCs, each supporting different sets of SBCs
based on the SoC.

http://layers.openembedded.org/layerindex/branch/master/layers/
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Too much of a good thing

● Layers may also provide more than you want

● Some layers bbappend quite a few recipes with small tweaks

● If you want a layer for one or a small number of recipes, these
tweaks may be a nuisance

● This can be handled in a couple of ways
– By using the BBMASK variable to mask out the undesired recipes

– By copying the desired recipes to your own layer

– Neither of these are necessarily ideal
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Distribution and Image Customization

● I would recommend looking at the poky distribution configuration files to start

● It is pretty straightforward to copy the poky configuration to your own layer, rename
it, and start tweaking it for your own purposes.

● If you are targetting small devices, the poky-tiny configuration trims some things out,
and is a good starting point.

● Next, investigate the image configuration files for an image such as “core-image-
minimal”

● Create your own image configuration based off of something close to what you want.

● For small devices, you will want to investigate some of the base packagegroups to
see if you really need them or not
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Build

http://xkcd.com/303/ (CC BY-NC 2.5) 

http://xkcd.com/303/
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Build Infrastructure

● Since OE bootstraps itself, clean builds are slower

● Throwing more hardware at it helps up to a point
– See recommendations in latest Yocto Project documentation

– Anecdotally, I’ve found that running from SSD helps significantly on
machines that do not have a lot of RAM for caching

● Some software applications are painful to build
– Java, Chromium

● Try to minimize building from scratch

http://www.yoctoproject.org/docs/2.0.1/ref-manual/ref-manual.html#speeding-up-the-build
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Adding the Secret Sauce

● There may be a few projects where only existing software is
required, but you likely have in-house developed software for
your product

● For small embedded devices (IoT nodes, etc.), you may have
one or two in-house applications

● For larger systems, the bulk of the software on the device may
be in-house applications

● How do we combine this software with our OE system images?
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Building In-house Software

● For small targets, or for projects where you’ve started from
scratch, you may be thinking of building everything via bitbake
recipes

● This can work

● However, in my experience, it doesn’t scale well when:
– You have a well-established existing build system for a lot of in-house

software

– You have a lot of packages in your image
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Large Project Issues

● If there is an existing build process, potentially already based on
another Linux distribution, inertia is likely to work against
significant change

● If there is a lot of software:
– Building it all may not be developer friendly, as it has a good chance

of being slower than existing workflow for code-build-test cycles

– Writing recipes for all the separate components to split up the build
could be a substantial amount of work
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A Typical Large Project Model

● A common model is to split the OE and in-house software builds

● Usually the artifacts from the OE build serve as input for the in-house software
build, which glues everything together.

● This does not have the elegance of a single build, but it has been the case in my
experience that development of the two proceeds at different rates anyway

● It also saves in-house application developers from potentially having significant
waits if a change on the OE side triggers rebuilding of a lot of packages

● In a continuous integration system, it is straightforward to chain the two builds
together
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Don’t Panic!

● Intermittently you may get a somewhat cryptic build failure

● Failures you might see include:
– Changing package contents / splitting a package can confuse RPM, and sysroot

population will fail

– Sometimes changing a variable seems to not be detected

● If it’s a single recipe that’s failing, start off by trying to clean its state with
“bitbake -c cleansstate”, then trying to build again

● If sysroot or rootfs population fails and the reason is not obvious, a brute force
next step is to remove the “tmp” directory and have it be recreated from  the
state cache.
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SDKs

● If you do build in-house software, it’s likely that you are building a SDK for it
using OE.

● If you support a large product, it has been my experience that you will be
updating the SDK somewhat regularly for internal users during a
development cycle.

● It is common to install the SDK(s) on a NFS share to avoid having
developers doing it themselves, and to sometimes to allow control over
what tools are used.

● A drawback of this is that installing to NFS can be quite time-consuming.
Run the install on the NFS server if possible!
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SDKs in motion

● It is important to remember that once a SDK has been installed,
it will not work correctly if it is moved afterwards

● If your configuration management process happens to include
storing the toolchain(s) in version control, this will likely be a
problem

● This can be hacked around by tinkering with the SDK’s relocate
scripts, but if at all possible I would recommend changing your
process to avoid the issue altogether
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Packaging and Upgrade

● For a lot of small systems the common packaging solution is a
single package of some sort containing kernel, root filesystem,
etc.

● Pretty well understood, and tools such as swupdate exist to
implement this model

● What about using the deb or rpm package management
features of OE for piecemeal upgrades?

https://github.com/sbabic/swupdate


scott.murray@konsulko.comSlide 22 - 04/04/16

Package Management

● There are some issues with implementing a piecemeal upgrade scheme

● Package based upgrades across major OE releases can sometimes be
problematic due to package renames or splits

● Packager manager support for pulling package upgrades over the network
takes some work

● For rpm, smartpm is not widely used and not well known.  There are no
recipes for yum, dnf, or zypper.

● For deb, apt is part of oe-core.

● Setting up package repositories is covered in this Intel whitepaper

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/package-manager-white-paper.pdf
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Workflow

● Your build-update-test cycle for your target

● For example, working on your OE configuration, tweaking a
library or application recipe to develop a patch

● devtool is a relatively recent tool to simplify such tasks
– I must admit I’ve been a bit of a Luddite so far, and still use a simple

workflow iterating with bitbake

● I have heard reports of people feeling more productive when
they just temporarily install development packages on the target
so they can develop there

http://www.yoctoproject.org/docs/2.0.1/dev-manual/dev-manual.html#using-devtool-in-your-workflow
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Security

● The OE team’s responsiveness on patching new security issues
is good
– However, tracking the application of patches for CVEs does require

following the oe-core and oe-devel mailing lists and potentially
looking in git

● Note that, since only the last 3 releases receive updates, you
will be on your own after 1.5-2 years if you stay with a particular
release

● For most products, this will not be sufficient
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What are the options?

● Plan to roll out regular updates that track OE releases, to stay within the support window.

● Pay a vendor such as Wind River or Mentor Graphics for longterm support

● Do it yourself
– Time-consuming to do a good job, especially if your product contains a lot of software packages.

● The recent meta-debian project attempts to solve the problem by fusing OE and Debian
– Combines OE cross-compilation with Debian package patches

– Allows tracking 5 years of security fixes from Debian stable

● There are some downsides
– Requires a new recipe be written for each package

– Community is currently small
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Support

● Most immediate sources of support are the #oe and #yocto IRC
channels on the freenode network
– Need to be patient, especially outside of working hours

– If you have not used IRC before, read up on etiquette

– “Don’t ask to ask”

● oe-core, oe-devel, and yocto mailing lists
– If sending recipe patches, there is a style guide in the OE wiki

● For documentation, bookmarking the "mega-manual" is useful, as it can
be easily searched for terms.

https://freenode.net/
http://www.openembedded.org/wiki/Styleguide
http://www.yoctoproject.org/docs/2.0.1/mega-manual/mega-manual.html
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Questions?
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