
OpenEmbedded in the Real World

Scott Murray
Senior Staff Software Engineer

Konsulko Group
http://konsulko.com

scott.murray@konsulko.com

scott.murray@konsulko.comSlide 2 - 04/04/16

Who am I?

● Long time Linux user (over 20 years)

● Have done Linux software development for over 15 years

● Have been doing embedded Linux development on and off since the start of my
professional career

● Have previously done some kernel driver development, wrote and maintain the Linux
CompactPCI hotswap framework

● Have been using OpenEmbedded / Yocto Project for close to three years on several
projects ranging from small sensor style devices to rack mount network equipment.

● Currently working for Konsulko Group providing professional services

● Long time conference attendee, first time presenter

scott.murray@konsulko.comSlide 3 - 04/04/16

Caveats

● While I consider myself experienced with using
OpenEmbedded, I’ve still got lots to learn!

● My apologies in advance if some of this seem obvious.

● I’m going to gloss over some details, as I’d like to get to the
issues I feel you might not be aware of.

● Any recommendations I make are based on what has worked
for projects I’ve worked on, and on discussions with coworkers
and various community members.

scott.murray@konsulko.comSlide 4 - 04/04/16

Agenda

● Quick recap of OpenEmbedded & The Yocto Project

● Starting a project with OpenEmbedded

● Builds

● Packaging and Upgrade

● Workflow

● Security

● Support

scott.murray@konsulko.comSlide 5 - 04/04/16

OpenEmbedded & The Yocto Project in 1 Slide!

● OpenEmbedded (OE) is a build system and associated
metadata to build embedded Linux distributions.

● The Yocto Project is a collaboration project that was founded in
2010 to aid in the creation of custom Linux based systems for
embedded products. It is a collaboration of many hardware and
software vendors, and uses OpenEmbedded as its core
technology. A reference distribution called “poky” (pock-EE) built
with OE is provided by the Yocto Project to serve as a starting
point for embedded developers.

scott.murray@konsulko.comSlide 6 - 04/04/16

An aside about naming

● People do and will get the naming wrong

● A typical example is referring to “Yocto Linux”

● My recommendation is to pick your battles...

scott.murray@konsulko.comSlide 7 - 04/04/16

Starting a Project

● No matter the target, you’ll need to start by setting up your OpenEmbedded
base layers, and then add any required BSP layers or layers for specific
functionality

● You can do this by either:
– Piecing together oe-core and bitbake repositories

– Using the all-in-one Yocto Project poky repository

● Then add additional layers on top
– Usually starting with your own layer to customize distribution settings, tweak package

recipes, etc.

● Lastly customize the target image

scott.murray@konsulko.comSlide 8 - 04/04/16

Layer issues

● If you weren’t planning on using anything from poky, it seems reasonable to
just use bitbake and oe-core by themselves…

● This can work, but many BSP layers rely on the linux-yocto kernel recipe from
poky, making this path more difficult

● It is slight heresy to some in the OE community, but I lean towards using
poky.git, as it’s one or two repos less to clone and track

● Branches can be an issue with non-core layers!
– They may not have branches for different releases of OE (or at all)

– You may have to mix and match, which can require experimentation and tweaking
recipes

scott.murray@konsulko.comSlide 9 - 04/04/16

Layer issues continued

● There are a wide variety of layers available

● A good resource is the OpenEmbedded Metadata Index , which
allows searching for layers and recipes

● Be aware that layer quality varies widely for layers not
maintained by OE, the Yocto Project, or a vendor.

● As an example, there are instances of multiple layers existing to
support certain SoCs, each supporting different sets of SBCs
based on the SoC.

http://layers.openembedded.org/layerindex/branch/master/layers/

scott.murray@konsulko.comSlide 10 - 04/04/16

Too much of a good thing

● Layers may also provide more than you want

● Some layers bbappend quite a few recipes with small tweaks

● If you want a layer for one or a small number of recipes, these
tweaks may be a nuisance

● This can be handled in a couple of ways
– By using the BBMASK variable to mask out the undesired recipes

– By copying the desired recipes to your own layer

– Neither of these are necessarily ideal

scott.murray@konsulko.comSlide 11 - 04/04/16

Distribution and Image Customization

● I would recommend looking at the poky distribution configuration files to start

● It is pretty straightforward to copy the poky configuration to your own layer, rename
it, and start tweaking it for your own purposes.

● If you are targetting small devices, the poky-tiny configuration trims some things out,
and is a good starting point.

● Next, investigate the image configuration files for an image such as “core-image-
minimal”

● Create your own image configuration based off of something close to what you want.

● For small devices, you will want to investigate some of the base packagegroups to
see if you really need them or not

scott.murray@konsulko.comSlide 12 - 04/04/16

Build

http://xkcd.com/303/ (CC BY-NC 2.5)

http://xkcd.com/303/

scott.murray@konsulko.comSlide 13 - 04/04/16

Build Infrastructure

● Since OE bootstraps itself, clean builds are slower

● Throwing more hardware at it helps up to a point
– See recommendations in latest Yocto Project documentation

– Anecdotally, I’ve found that running from SSD helps significantly on
machines that do not have a lot of RAM for caching

● Some software applications are painful to build
– Java, Chromium

● Try to minimize building from scratch

http://www.yoctoproject.org/docs/2.0.1/ref-manual/ref-manual.html#speeding-up-the-build

scott.murray@konsulko.comSlide 14 - 04/04/16

Adding the Secret Sauce

● There may be a few projects where only existing software is
required, but you likely have in-house developed software for
your product

● For small embedded devices (IoT nodes, etc.), you may have
one or two in-house applications

● For larger systems, the bulk of the software on the device may
be in-house applications

● How do we combine this software with our OE system images?

scott.murray@konsulko.comSlide 15 - 04/04/16

Building In-house Software

● For small targets, or for projects where you’ve started from
scratch, you may be thinking of building everything via bitbake
recipes

● This can work

● However, in my experience, it doesn’t scale well when:
– You have a well-established existing build system for a lot of in-house

software

– You have a lot of packages in your image

scott.murray@konsulko.comSlide 16 - 04/04/16

Large Project Issues

● If there is an existing build process, potentially already based on
another Linux distribution, inertia is likely to work against
significant change

● If there is a lot of software:
– Building it all may not be developer friendly, as it has a good chance

of being slower than existing workflow for code-build-test cycles

– Writing recipes for all the separate components to split up the build
could be a substantial amount of work

scott.murray@konsulko.comSlide 17 - 04/04/16

A Typical Large Project Model

● A common model is to split the OE and in-house software builds

● Usually the artifacts from the OE build serve as input for the in-house software
build, which glues everything together.

● This does not have the elegance of a single build, but it has been the case in my
experience that development of the two proceeds at different rates anyway

● It also saves in-house application developers from potentially having significant
waits if a change on the OE side triggers rebuilding of a lot of packages

● In a continuous integration system, it is straightforward to chain the two builds
together

scott.murray@konsulko.comSlide 18 - 04/04/16

Don’t Panic!

● Intermittently you may get a somewhat cryptic build failure

● Failures you might see include:
– Changing package contents / splitting a package can confuse RPM, and sysroot

population will fail

– Sometimes changing a variable seems to not be detected

● If it’s a single recipe that’s failing, start off by trying to clean its state with
“bitbake -c cleansstate”, then trying to build again

● If sysroot or rootfs population fails and the reason is not obvious, a brute force
next step is to remove the “tmp” directory and have it be recreated from the
state cache.

scott.murray@konsulko.comSlide 19 - 04/04/16

SDKs

● If you do build in-house software, it’s likely that you are building a SDK for it
using OE.

● If you support a large product, it has been my experience that you will be
updating the SDK somewhat regularly for internal users during a
development cycle.

● It is common to install the SDK(s) on a NFS share to avoid having
developers doing it themselves, and to sometimes to allow control over
what tools are used.

● A drawback of this is that installing to NFS can be quite time-consuming.
Run the install on the NFS server if possible!

scott.murray@konsulko.comSlide 20 - 04/04/16

SDKs in motion

● It is important to remember that once a SDK has been installed,
it will not work correctly if it is moved afterwards

● If your configuration management process happens to include
storing the toolchain(s) in version control, this will likely be a
problem

● This can be hacked around by tinkering with the SDK’s relocate
scripts, but if at all possible I would recommend changing your
process to avoid the issue altogether

scott.murray@konsulko.comSlide 21 - 04/04/16

Packaging and Upgrade

● For a lot of small systems the common packaging solution is a
single package of some sort containing kernel, root filesystem,
etc.

● Pretty well understood, and tools such as swupdate exist to
implement this model

● What about using the deb or rpm package management
features of OE for piecemeal upgrades?

https://github.com/sbabic/swupdate

scott.murray@konsulko.comSlide 22 - 04/04/16

Package Management

● There are some issues with implementing a piecemeal upgrade scheme

● Package based upgrades across major OE releases can sometimes be
problematic due to package renames or splits

● Packager manager support for pulling package upgrades over the network
takes some work

● For rpm, smartpm is not widely used and not well known. There are no
recipes for yum, dnf, or zypper.

● For deb, apt is part of oe-core.

● Setting up package repositories is covered in this Intel whitepaper

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/package-manager-white-paper.pdf

scott.murray@konsulko.comSlide 23 - 04/04/16

Workflow

● Your build-update-test cycle for your target

● For example, working on your OE configuration, tweaking a
library or application recipe to develop a patch

● devtool is a relatively recent tool to simplify such tasks
– I must admit I’ve been a bit of a Luddite so far, and still use a simple

workflow iterating with bitbake

● I have heard reports of people feeling more productive when
they just temporarily install development packages on the target
so they can develop there

http://www.yoctoproject.org/docs/2.0.1/dev-manual/dev-manual.html#using-devtool-in-your-workflow

scott.murray@konsulko.comSlide 24 - 04/04/16

Security

● The OE team’s responsiveness on patching new security issues
is good
– However, tracking the application of patches for CVEs does require

following the oe-core and oe-devel mailing lists and potentially
looking in git

● Note that, since only the last 3 releases receive updates, you
will be on your own after 1.5-2 years if you stay with a particular
release

● For most products, this will not be sufficient

scott.murray@konsulko.comSlide 25 - 04/04/16

What are the options?

● Plan to roll out regular updates that track OE releases, to stay within the support window.

● Pay a vendor such as Wind River or Mentor Graphics for longterm support

● Do it yourself
– Time-consuming to do a good job, especially if your product contains a lot of software packages.

● The recent meta-debian project attempts to solve the problem by fusing OE and Debian
– Combines OE cross-compilation with Debian package patches

– Allows tracking 5 years of security fixes from Debian stable

● There are some downsides
– Requires a new recipe be written for each package

– Community is currently small

scott.murray@konsulko.comSlide 26 - 04/04/16

Support

● Most immediate sources of support are the #oe and #yocto IRC
channels on the freenode network
– Need to be patient, especially outside of working hours

– If you have not used IRC before, read up on etiquette

– “Don’t ask to ask”

● oe-core, oe-devel, and yocto mailing lists
– If sending recipe patches, there is a style guide in the OE wiki

● For documentation, bookmarking the "mega-manual" is useful, as it can
be easily searched for terms.

https://freenode.net/
http://www.openembedded.org/wiki/Styleguide
http://www.yoctoproject.org/docs/2.0.1/mega-manual/mega-manual.html

scott.murray@konsulko.comSlide 27 - 04/04/16

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

