
What small teams should
know when building

embedded Linux systems

Gregory Fong <gregory.fong@virgingalactic.com>
Sr. Software Engineer, Virgin Galactic
Embedded Linux Conference 2017

mailto:gregory.fong@virgingalactic.com

First, a question:

What are you really
trying to build?

Where do you start?
• Is hardware defined yet? If so, is it good

enough?

• What functionality do you absolutely need?

• What would be nice to have in the future?

• Are vendor reference boards available?

• What level of software support do you need?

Strong foundations

Vendor-provided SDK  
(and/or BSP)

• Whether based on Yocto, OpenWRT,
Buildroot… it doesn’t really matter

• Large amounts of commonly used software

• Usually missing pieces specifically for your
niche

• Easy to add in functionality—look for
guidelines!

Don’t ignore these

Things to watch for

• Does the vendor provide thorough hardware
and software release notes?

• Can you get a direct support channel, or will
you have to go through a reseller?

• How long is software support typically
provided for a chipset?

What if I have custom hardware?

Reference designs are
your friends

Keep track of the differences,
and note impact on project

• Use an issue tracker so things don’t get lost

• Estimate time to avoid surprises

• Scheduling reduces scope creep

Work with the visible
derivations, note differences

• Similar board schematic?

• Same processor, memory, storage?

• Any common networking peripherals?

• Sensors kept, added, or removed?

Figure out what you’ll need
to update

• Figure out differences in pinmux between
your board and reference

• Update device tree (most platforms)

• Add in drivers for added peripherals

Use a separate kernel
git repo if you diverge

significantly from
reference

Finally, integrate your
application

• Note compile- and run-time dependencies

• Appliance? Need to start stuff at boot, look
how other services install themselves

• Deployment strategy—development vs
production

Now that we have a
the basic idea, some

best practices…

Use version control!

Use version control!
Better:

Use version control
like upstream

Why is upstreaming important?
(aka how do I convince my boss?)

• Reduce maintenance costs over time

• Improved code quality

• Low-cost positive PR

Upstream.
You can’t afford not to.

Build system tips

• Use build system option for local mirrors

• Take advantage of shared caches to reduce
build times, and share among developers

• Set up a Continuous Integration system
(Jenkins, buildbot, etc.), deploy to TFTP
server for network boot

Do code reviews.
Review before merge.

Summary

• Be involved in hardware design

• Use reference boards and vendor SDK

• Use version control

• Work with upstream as much as possible

That’s it!

Questions?

