What small teams shoulo
KNow when bullding
embedded Linux systems

Gregory Fong <gregory.fong@virgingalactic.com>
Sr. Software Engineer, Virgin Galactic
-mbedded Linux Conference 2017



mailto:gregory.fong@virgingalactic.com

-Irst, a question:



What are you really
trying to build”




Where do you start”

* |[s hardware defined yet? If so, is It good
enough?

* \What functionality do you absolutely need?

e \What would be nice to have in the future?

e Are vendor reference boards available?

 \WWhat level of software support do you need?



a4 )

’

-

.
B

3

)
-

A s —
... — . —— — f—— :
~ » - -

4"
4
i

Strong foundations



Vendor-provided SDK
(and/or BSP)

Whether based on Yocto, OpenWRT,
Bulldroot... It doesn't really matter

Large amounts of commonly used software

Usually missing pieces specitically for your
niche

Easy to add in functionality—Ilook for
guidelines!



Don't ignore these






Things to watch for

* Does the vendor provide thorough hardware
and software release notes”

* Can you get a direct support channel, or will
you have to go through a reseller?

* How long Is software support typically
porovided for a chipset?



)
I

What if | have custom hardware”



Reference designs are
your friends



Keep track of the differences,
and note Impact on project

* Use an issue tracker so things don't get lost
e Estimate time to avold surprises

* Scheduling reduces scope creep



Work with the visible
derivations, note differences

o Similar board schematic”
e Same processor, memory, storage?
* Any common networking peripherals®

e Sensors kept, added, or removed?



Figure out what you'll need
to update

* Figure out differences in pinmux between
your board and reference

 Update device tree (most platforms)

 Add Iin drivers for added peripherals



Use a separate kernel
git repo If you diverge
significantly from
reference



~Finally, integrate your
application

* Note compile- and run-time dependencies

* Appliance” Need to start stutf at boot, look
how other services Install themselves

* Deployment strategy—adevelopment vs
oroduction



Now that we have a
the basic Idea, some
pest practices...



Use version control!



Better:
Use version control
like upstream




Why Is upstreaming important”
(aka how do | convince my boss?)

e Reduce maintenance costs over time
* Improved code quality

* Low-cost positive PR



Upstream.
You can't afford not to.



Bulld system tips

* Use build system option for local mirrors

* Take advantage of shared caches to reduce
build times, and share among developers

e Set up a Continuous Integration system
(Jenkins, buildbot, etc.), deploy to TFTP
server for network boot



)0 code reviews.
Review before merge.



summary

Be Involved In hardware design

Use reference boards and vendor SDK
Use version control

Work with upstream as much as possible



That's It!



Questions?




