
1© 2014 Cisco and/or its affiliates. All rights reserved.

V4L2: A Status Update
Hans Verkuil
Cisco Systems Norway

Cisco Confidential 2© 2014 Cisco and/or its affiliates. All rights reserved.

Hardware Codec Support

© 2014 Cisco and/or its affiliates. All rights reserved. 3

Codec Devices

Codec

VIDIOC_QBUF VIDIOC_QBUF

VIDIOC_DQBUF VIDIOC_DQBUF

V4L2_BUF_TYPE_VIDEO_OUTPUT V4L2_BUF_TYPE_VIDEO_CAPTURE

© 2014 Cisco and/or its affiliates. All rights reserved. 4

Codecs: I/B/P-Frames

Picture from https://en.wikipedia.org/wiki/Inter_frame, Cmglee [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

I-Frame: Intra-coded picture
P-Frame: Predicted picture
B-Frame: Bidirectional predicted picture

© 2014 Cisco and/or its affiliates. All rights reserved. 5

Stateful Codec Support
● Stateful HW Codecs keep track of the state themselves, the application just provides the raw

frames (for the encoder) or bytestream (for the decoder) and it is compressed/decompressed
without further interventions.

● Depending on the codec format the application will have to do some basic parsing for the
decoder to split the stream into separate frames: while some HW decoders have full bytestream
parsing support, most decoders expect all data for one encoded frame in one buffer.

● Detailed decoder and encoder specification are being written. They describe how to use the
V4L2 API for stateful encoders and decoders, including information on how to handle seeks and
mid-stream resolution changes. Google (Chromium/ChromeOS team) is the main contributor for
this. The detailed decoder spec has been merged into the V4L2 Specification, the last remaining
issues for the encoder spec will hopefully be resolved soon.

● Testing of this API is important: we created a vicodec driver that we can use for prototyping and
testing of stateful encoders and decoders. The v4l2-compliance utility can test codecs and is
also used in daily regression testing against vicodec.

© 2014 Cisco and/or its affiliates. All rights reserved. 6

Stateless Codec Support
● Stateless HW Codecs do not keep track of the state, instead the application has to provide it

together with the raw frame (for the encoder) or compressed frame (for the decoder). No
bytestream parsing takes place, and reference frames needed for decoding have to be provided
explicitly.

● Currently there are no implementations for stateless encoders, so this is on hold until they
appear. For stateless encoders the driver will have to keep track of some state, specifically
relating to reference frames which have to be allocated by the driver.

● A detailed specification on how to use the V4L2 API for stateless decoders, including information
on how to handle seeks and mid-stream resolution changes, has been merged for 5.5. Google
(Chromium/ChromeOS team) is the main contributor for this.

● Testing of this API is important: the vicodec driver also supports a stateless decoder that we can
use for prototyping and testing of core frameworks. The stateless decoder support was
developed by Dafna Hirschfeld as part of her Outreachy project. The v4l2-compliance utility is
unfortunately not yet capable of testing the vicodec stateless decoder.

© 2014 Cisco and/or its affiliates. All rights reserved. 7

Stateless Decoder Support
● Stateless decoders use the new Request API framework. There are currently two stateless

decoders merged: cedrus for Allwinner SoCs and hantro for Rockchip and i.MX8 SoCs.

● Currently supported codecs are MPEG-2, H.264 and VP8. HEVC support is being worked on.
VP9 is planned as well.

● Stateless decoder support is still in staging: the API isn’t considered fully stable yet.

© 2014 Cisco and/or its affiliates. All rights reserved. 8

Request API
● Stateless decoders need to provide both state information (codec specific) and the compressed

frame to the hardware. This means that we need to pass per-frame configuration data. The
Request API was designed for that purpose.

● Based on a less-general API called the Configuration Store API: has been used for stateless
decoders by ChromeOS for several years, but never made it into the kernel.

● Basic concept (borrowed from Android CameraHAL): create a request object, add any
configuration data and video buffers to it, then queue the request to the driver which will then
process it. When the request has been processed, an event is generated and the application can
retrieve the result from the request object.

● Currently only used by stateless decoders, but will be eventually be extended to camera
pipelines as well.

● Stateless decoders expect that the state is set through controls. Different controls are created for
different codecs (MPEG-2, H.264, etc.) and are hardware independent.

© 2014 Cisco and/or its affiliates. All rights reserved. 9

Userspace API for Stateless Decoders
● Two device nodes are involved: a /dev/mediaX device is used to create Request objects and

the /dev/videoX device is used to stream buffers to/from the decoder.

● Userspace is responsible for parsing the headers of the bytestream.

● Create a Request object (usually one for every allocated buffer):

ioctl(media_fd, MEDIA_IOC_REQUEST_ALLOC, &request_fd);

© 2014 Cisco and/or its affiliates. All rights reserved. 10

Userspace API for Stateless Decoders

Picture from https://en.wikipedia.org/wiki/Inter_frame, Cmglee [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

I-Frame: Intra-coded picture
P-Frame: Predicted picture
B-Frame: Bidirectional predicted picture

© 2014 Cisco and/or its affiliates. All rights reserved. 11

Userspace API for Stateless Decoders
● Queue the output buffer containing the compressed data of a single frame to the Request object.

Tag the output buffer and obtain the reference.

struct v4l2_buffer out_buf;
...
out_buf.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
out_buf.request_fd = request_fd;
out_buf.flags = V4L2_BUF_FLAG_REQUEST_FD;
out_buf.timestamp.tv_sec = buf_tag;
out_buf.timestamp.tv_usec = 0;
__u64 buf_ref_ts = v4l2_timeval_to_ns(&out_buf.timestamp);
ioctl(video_fd, VIDIOC_QBUF, &out_buf);

© 2014 Cisco and/or its affiliates. All rights reserved. 12

Userspace API for Stateless Decoders
struct v4l2_mpeg2_sequence {
 /* ISO/IEC 13818-2, ITU-T Rec. H.262: Sequence header */
 __u16 horizontal_size;
 __u16 vertical_size;
 __u32 vbv_buffer_size;

 /* ISO/IEC 13818-2, ITU-T Rec. H.262: Sequence extension */
 __u16 profile_and_level_indication;
 __u8 progressive_sequence;
 __u8 chroma_format;
};

struct v4l2_mpeg2_picture {
 /* ISO/IEC 13818-2, ITU-T Rec. H.262: Picture header */
 __u8 picture_coding_type;

 /* ISO/IEC 13818-2, ITU-T Rec. H.262: Picture coding extension */
 __u8 f_code[2][2];
 __u8 intra_dc_precision;
 __u8 picture_structure;
 __u8 top_field_first;
 __u8 frame_pred_frame_dct;
 __u8 concealment_motion_vectors;
 __u8 q_scale_type;
 __u8 intra_vlc_format;
 __u8 alternate_scan;
 __u8 repeat_first_field;
 __u16 progressive_frame;
};

struct v4l2_ctrl_mpeg2_slice_params {
 __u32 bit_size;
 __u32 data_bit_offset;
 __u64 backward_ref_ts;
 __u64 forward_ref_ts;

 struct v4l2_mpeg2_sequence sequence;
 struct v4l2_mpeg2_picture picture;

 /* ISO/IEC 13818-2, ITU-T Rec. H.262: Slice */
 __u32 quantiser_scale_code;
};

#define V4L2_CID_MPEG_VIDEO_MPEG2_SLICE_PARAMS \
 (V4L2_CID_MPEG_BASE+250)

© 2014 Cisco and/or its affiliates. All rights reserved. 13

Userspace API for Stateless Decoders
● All data in the state controls must relate to the corresponding codec standard.

● These controls are currently not part of the public kernel API until we’ve implemented them in
more drivers and have more confidence that we didn’t forget anything. H.264 in particular can
expect some more revisions. MPEG-2/VP8 seems pretty solid.

● Applications fill in the data based on the contents of the parsed headers from the bytestream.

● The same controls are valid for all stateless decoders.

● If there are HW-decoder-specific controls, then those shall be defined separately.

© 2014 Cisco and/or its affiliates. All rights reserved. 14

Userspace API for Stateless Decoders
● Add the state information to the Request object:

struct v4l2_ctrl_mpeg2_slice_params params;
struct v4l2_ext_control ctrl = {};
struct v4l2_ext_controls ctrls = {};

// fill in params
params.backward_ref_ts = some_buf_ref_ts;
ctrl.id = V4L2_CID_MPEG_VIDEO_MPEG2_SLICE_PARAMS;
ctrl.ptr = ¶ms;
ctrl.size = sizeof(param);
ctrls.controls = &ctrl;
ctrls.count = 1;
ctrls.which = V4L2_CTRL_WHICH_REQUEST_VAL;
ctrls.request_fd = request_fd;
ioctl(video_fd, VIDIOC_S_EXT_CTRLS, &ctrls);

© 2014 Cisco and/or its affiliates. All rights reserved. 15

Userspace API for Stateless Decoders
● Queue the capture buffer that will contain the result:

ioctl(video_fd, VIDIOC_QBUF, &cap_buf);

● Queue the Request for the output buffer:

ioctl(request_fd, MEDIA_REQUEST_IOC_QUEUE, NULL);

● Wait for an event from request_fd signaling that the request has completed.

● Dequeue the buffers:

ioctl(video_fd, VIDIOC_DQBUF, &out_buf);
ioctl(video_fd, VIDIOC_DQBUF, &cap_buf);

● cap_buf.timestamp == out_buf.timestamp and buf_ref_ts refers to this capture
buffer.

© 2014 Cisco and/or its affiliates. All rights reserved. 16

Userspace API for Stateless Decoders

Picture from https://en.wikipedia.org/wiki/Inter_frame, Cmglee [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

Tag=1

Tag=2

backw
ard_ref_ts=1

backw
ard_ref_ts=1

forw
ard_ref_ts=2

Tag=5

Tag=3

backw
ard_ref_ts=1

forw
ard_ref_ts=2

backw
ard_ref_ts=2

forw
ard_ref_ts=3

backw
ard_ref_ts=2

forw
ard_ref_ts=3

backw
ard_ref_ts=3

forw
ard_ref_ts=4

backw
ard_ref_ts=3

forw
ard_ref_ts=4

backw
ard_ref_ts=4

forw
ard_ref_ts=5

backw
ard_ref_ts=4

forw
ard_ref_ts=5

Tag=4

backw
ard_ref_ts=3

© 2014 Cisco and/or its affiliates. All rights reserved. 17

H.264/HEVC Decoder Slicing Support
● Slicing: a single frame is divided into N slices, and each slice is encoded/decoded independently.

This reduces latency.

● Two types of stateless decoders: those that decode each slice into a buffer and rely on userspace
to copy the data into an final frame buffer, combining all slices that build up the frame.
And those that do this in the driver and can DMA the decoded slice straight into the right position
of the capture buffer. This requires API support:

● New capability flag to signal support for this feature (depends on the current output format):

V4L2_BUF_CAP_SUPPORTS_M2M_HOLD_CAPTURE_BUF

New output buffer flag to hold back the capture buffer until a new frame starts:

V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF

New decoder command to flush the last held capture buffer:

V4L2_DEC_CMD_FLUSH

Cisco Confidential 18© 2014 Cisco and/or its affiliates. All rights reserved.

Testing

© 2014 Cisco and/or its affiliates. All rights reserved. 19

Virtual Drivers
● vivid: emulates webcam/TV/S-Video/HDMI video/vbi capture/output, radio receivers/modulator,

software defined radio receiver, HDMI CEC. Under development: metadata capture/output, v4l-
touch capture, software defined radio transmitter.

● vim2m: emulates simple video memory-to-memory processing device (such as an RGB to YUV
converter).

● vimc: emulates a complex camera pipeline.

● vicodec: emulates a stateful encoder, a stateful decoder and a stateless decoder. Preliminary
code for a stateless encoder has been posted, but not merged yet since we do not have a real
stateless HW encoder yet.

© 2014 Cisco and/or its affiliates. All rights reserved. 20

Testing with Virtual Drivers
● We want to have better quality control over core media changes in order to avoid regressions.

Created a new test-media script to do regression tests for V4L2 and CEC. The vivid tests are
now run as part of the kernel CI tests (kernelci.org).

● Good compliance tests also make it much easier to write high-quality drivers.

● Developing a new API, the documentation, and testing the new API using virtual drivers is very
useful in finding corner cases in the API that you missed.

● syzbot/syzkaller: fuzzing checker from Google. Uses the virtual drivers for testing.

© 2014 Cisco and/or its affiliates. All rights reserved. 21

Resources
● Linux Media Infrastructure API: https://linuxtv.org/docs.php

● Version with Codec specification: https://hverkuil.home.xs4all.nl/codec-api/

● Upstream media git repository: http://git.linuxtv.org/media_tree.git

● Cedrus test utility for the stateless decoder: https://github.com/bootlin/v4l2-request-test

● v4l-utils git repository: http://git.linuxtv.org/v4l-utils.git

● linux-media mailinglist & irc channel: http://linuxtv.org/lists.php

● https://linuxtv.org/wiki/index.php/Media_Open_Source_Projects:_Looking_for_Volunteers

● email: hverkuil@xs4all.nl

https://linuxtv.org/docs.php
https://hverkuil.home.xs4all.nl/codec-api
http://git.linuxtv.org/media_tree.git
https://github.com/bootlin/v4l2-request-test
http://git.linuxtv.org/v4l-utils.git
http://linuxtv.org/lists.php
https://linuxtv.org/wiki/index.php/Media_Open_Source_Projects:_Looking_for_Volunteers

Cisco Confidential 22© 2014 Cisco and/or its affiliates. All rights reserved.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

