

Soletta Technical Introduction

Otavio Pontes
OTC - Intel

Soletta overview

Features and Architecture

Soletta Overview

IoT Questions and Problems

- Explosion of libraries
 - Subsets: I/O, comms
 - Specific targets
 - Too big for small devices
 - Hard to reuse knowledge
- Nothing is integrated
- Lack of documentation

Bringing intelligence to IoT devices

What is Soletta?

- IoT Framework
- Open Source
- Easy access:
 - Sensors
 - Actuators
 - Communication
- Portable code
- Different platforms, including small OSs

Architecture

Application										
Soletta										
	Machine Learning	g Flow	Flow		OIC		MQTT	HTTP		
	Services	Network	Update		Crypto		Event dispatching	Persistence		
	GPIO	SPI	l	JART	I2C		PWM	Timers		
Hardware and Operating System Abstraction Layer										

System Libs	Comms					
Kernel						
Hardware						

Soletta overview

Flow layer

- Domain-specific language (DSL)
- Interface
- Easy target audience
- Code safety
- Visual
- OOBE

Simple and canonical example


```
#Server config file
{
  "name": "LED",
  "options": {
    "pin": "7"
  },
  "type": "gpio/writer"
}
```



```
#Client config file
"name": "LED",
"options": {
 "pin": "3"
"type": "gpio/writer"
"name": "Button",
"options": {
 "pin": "5"
"type": "gpio/reader"
```


Editor

Systema Journa

Cheat Sheet

Cheat Sheet

gpio/reader GPIO reader

INPUT PORTS

OUTPUT PORTS

OUT | boolean GPIO reader, port out

OPTIONS

pin | string

Label of the desired pin on the board. If raw is set to true, this should be the pin number as recognized by the platform.

raw | boolean

Change 'pin' meaning to be the system parameters needed to address the desired pin. Use it if you know what you are doing.

poll_timeout | int Polling time

active low | boolean

Is active low edge rising | boolean

Is edge rising

edge falling | boolean

Is edge falling

pull | string

up for pull up, down for pull down, none for no pull

gpio/writer GPIO writer

INPUT PORTS

IN | boolean GPIO writer, port in

OUTPUT PORTS

OPTIONS

pin | string Label of the desired pin on the board. If raw is set to true, this should be the pin number as recognized by the platform.

raw | boolean

Change 'pin' meaning to be the system parameters needed to address the desired pin. Use it if you know what you are doing.

active_low | boolean

Is active low

W


```
#Client config file to be used in a desktop
{
  "name": "LED",
  "type": "gtk/led"
},
{
  "name": "Button",
  "type": "gtk/button"
}
```


Another example: Custom node

Operating Systems support

- Linux
- Zephyr
- RIOT
- Contiki

Boards tested so far

- Intel Edison (Linux)
- Intel Galileo Gen 2 (Linux)
- Intel Minnowboard Max (Linux)
- Quark SE Dev Board (Zephyr)
- Atmel SAMR21 Xplained Pro (RIOT)
- Raspberry Pi (Linux)

Small OSes measurements

Zephyr on Quark SE Dev Board

■ Image size: 107k

■ Peak used RAM: around 32k

How to get involved

Roadmap

Go Stable (Embedded World)

- Initial Public announcement
- Stable API (1.0)
- 100% API documentation
- OS: Linux, Zephyr (initial)...
- Languages: C/C++, FBP, JS
- Comms: OIC, CoAP, MQTT, HTTP
- Real-world usage samples

v2.0

- **Zephyr**: full I/O, persistence and 6loWPAN
- **FBP:** community packages (similar to npm)
- Node.js: full bindings

v3.0

- **Zephyr**: BLE, HTTP, MQTT, OTA updates
- Comms: BLE, Bluetooth, Management (ConnMan)

v4.0

• Zephyr: Small JS on 80Kb and FBP on 8Kb

How to get involved

Cool stuff we want to do

- Language bindings
- Visual Editor
- Plugins for other IDEs
- Communication protocols

How to get involved

Community

- GSoC
- Workshops / Talks
- Partnerships
- #soletta @ freenode
- Wiki https://github.com/solettaproject/soletta/wiki
- Mail lists https://lists.solettaproject.org/
- Site https://solettaproject.org/
- Repos https://github.com/solettaproject

Q&A

Thanks

Otavio Pontes - otavio.pontes@intel.com