The S-1131 Series is a positive voltage regulator with a low dropout voltage, high output voltage accuracy, and low current consumption developed based on CMOS technology. A built-in low on-resistance transistor provides a low dropout voltage and large output current, and a built-in overcurrent protector prevents the load current from exceeding the current capacitance of the output transistor. An ON/OFF circuit ensures a long battery life, and small SOT-89-5 and 6-Pin HSON(A) packages realize high-density mounting.

Features

- **Output voltage:** 1.5 V to 5.5 V, selectable in 0.1 V steps.
- **High-accuracy output voltage:** ±1.0%
- **Low dropout voltage:** 250 mV typ. (3.0 V output product, \(I_{OUT} = 100 \text{ mA} \))
- **Low current consumption:**
 - During operation: 35 \(\mu \text{A} \) typ., 65 \(\mu \text{A} \) max.
 - During shutdown: 0.1 \(\mu \text{A} \) typ., 1.0 \(\mu \text{A} \) max.
- **High peak current capability:** 300 mA output is possible (\(V_{IN} \geq V_{OUT(S)} + 1.0 \text{ V} \)) *1

 *1. Attention should be paid to the power dissipation of the package when the output current is large.

- **Built-in ON/OFF circuit:** Ensures long battery life.
- **Built-in overcurrent protector:** Overcurrent of output transistor can be restricted.
- **Small package:**
 - SOT-89-5, 6-Pin HSON(A)

Applications

- Power supply for DVD and CD-ROM drives
- Power supply for battery-powered devices
- Power supply for personal communication devices
- Power supply for note PCs

Packages

- **SOT-89-5** (Package drawing code: UP005-A)
- **6-Pin HSON(A)** (Package drawing code: PD006-A)
Block Diagram

Figure 1

*1. Parasitic diode
Selection Guide

The product types and output voltage for the S-1131 Series can be selected at the user’s request. Refer to the “Product name selection guide” for the meanings of the characters in the product name and “Product name list” for the full product names.

1. Product name selection guide

<table>
<thead>
<tr>
<th>S-1131</th>
<th>x</th>
<th>xx</th>
<th>xx</th>
<th>–</th>
<th>xxx</th>
<th>–</th>
<th>TF</th>
</tr>
</thead>
</table>
| IC direction in tape specifications
| Product name (abbreviation)
| UC: SOT-89-5
| PD: 6-Pin HSON(A)
| Output voltage
| 15 to 55
| (E.g., when the output voltage is 1.5 V, it is expressed as 15.)
| Product type
| A: ON/OFF pin negative logic
| B: ON/OFF pin positive logic

*1. Refer to the taping specifications at the end of this book.
*2. Refer to the product name list.
*3. Refer to 3. Shutdown pin (ON/OFF pin) under the Operation.

2. Product name list

<table>
<thead>
<tr>
<th>Output Voltage</th>
<th>SOT-89-5</th>
<th>6-Pin HSON(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 V ±1.0%</td>
<td>S-1131B15UC-N4A-TF</td>
<td>S-1131B15PD-N4A-TF</td>
</tr>
<tr>
<td>1.8 V ±1.0%</td>
<td>S-1131B18UC-N4D-TF</td>
<td>S-1131B18PD-N4D-TF</td>
</tr>
<tr>
<td>2.5 V ±1.0%</td>
<td>S-1131B25UC-N4K-TF</td>
<td>S-1131B25PD-N4K-TF</td>
</tr>
<tr>
<td>2.7 V ±1.0%</td>
<td>S-1131B27UC-N4M-TF</td>
<td>S-1131B27PD-N4M-TF</td>
</tr>
<tr>
<td>3.0 V ±1.0%</td>
<td>S-1131B30UC-N4P-TF</td>
<td>S-1131B30PD-N4P-TF</td>
</tr>
<tr>
<td>3.3 V ±1.0%</td>
<td>S-1131B33UC-N4S-TF</td>
<td>S-1131B33PD-N4S-TF</td>
</tr>
<tr>
<td>5.0 V ±1.0%</td>
<td>S-1131B50UC-N5J-TF</td>
<td>S-1131B50PD-N5J-TF</td>
</tr>
</tbody>
</table>

Remark Please contact the SII marketing department for products with an output voltage other than those specified above or type A products.
Pin Configuration

![Figure 2](image)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VOUT</td>
<td>Output voltage pin</td>
</tr>
<tr>
<td>2</td>
<td>VSS</td>
<td>GND pin</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>No connection</td>
</tr>
<tr>
<td>4</td>
<td>ON/OFF</td>
<td>Shutdown pin</td>
</tr>
<tr>
<td>5</td>
<td>VIN</td>
<td>Input voltage pin</td>
</tr>
</tbody>
</table>

*1. The NC pin is electrically open. The NC pin can be connected to VIN or VSS.

![Figure 3](image)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VOUT</td>
<td>Output voltage pin</td>
</tr>
<tr>
<td>2</td>
<td>VSS</td>
<td>GND pin</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>No connection</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
<td>No connection</td>
</tr>
<tr>
<td>5</td>
<td>ON/OFF</td>
<td>Shutdown pin</td>
</tr>
<tr>
<td>6</td>
<td>VIN</td>
<td>Input voltage pin</td>
</tr>
</tbody>
</table>

*1. The NC pin is electrically open. The NC pin can be connected to VIN or VSS.

Absolute Maximum Ratings

![Table 4](image)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Absolute Maximum Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>(V_{\text{IN}})</td>
<td>(V_{\text{SS}} - 0.3) to (V_{\text{SS}} + 7)</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>(V_{\text{OUT}})</td>
<td>(V_{\text{SS}} - 0.3) to (V_{\text{IN}} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{\text{D}})</td>
<td>SOT-89-5 500</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-Pin HSON(A) 500</td>
<td></td>
</tr>
<tr>
<td>Operating ambient temperature</td>
<td>(T_{\text{opr}})</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage ambient temperature</td>
<td>(T_{\text{stg}})</td>
<td>-40 to +125</td>
<td></td>
</tr>
</tbody>
</table>

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.
HIGH RIPPLE-REJECTION LOW DROPOUT MIDDLE OUTPUT CURRENT CMOS VOLTAGE REGULATOR

S-1131 Series

Electrical Characteristics

Table 5

(Ta = 25°C unless otherwise specified)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Test Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>V<sub>OUT(E1)</sub></td>
<td>V<sub>N</sub> = V<sub>OUT(S)</sub> + 1.0 V, I<sub>OUT</sub> = 30 mA, V<sub>OUT(S)</sub> × 0.99, V<sub>OUT(S)</sub> × 1.01</td>
<td>V<sub>OUT(S)</sub> ≤ 6.5 V</td>
<td>V<sub>OUT(S)</sub></td>
<td>300°C</td>
<td>mA</td>
<td>3</td>
</tr>
<tr>
<td>Output current</td>
<td>I<sub>OUT</sub></td>
<td>V<sub>N</sub> = V<sub>OUT(S)</sub> + 1.0 V</td>
<td>300°C</td>
<td>100 mA</td>
<td>0.05</td>
<td>0.2</td>
<td>% / V</td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>V<sub>drop</sub></td>
<td>I<sub>OUT</sub> = 100 mA</td>
<td>V<sub>OUT(S)</sub> = 1.5 V, 1.0 mA ≤ I<sub>OUT</sub> ≤ 80 mA</td>
<td>100°C</td>
<td>80 mV</td>
<td>ppm / °C</td>
<td></td>
</tr>
<tr>
<td>Load regulation</td>
<td>ΔV<sub>OUT2</sub></td>
<td>V<sub>N</sub> = V<sub>OUT(S)</sub> + 1.0 V,</td>
<td>20</td>
<td>40</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage temperature coefficient</td>
<td>ΔV<sub>OUT</sub>/ΔT<sub>A</sub></td>
<td>V<sub>N</sub> = V<sub>OUT(S)</sub> + 1.0 V, I<sub>OUT</sub> = 10 mA,</td>
<td>±100</td>
<td>—</td>
<td>dB</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Current consumption during operation</td>
<td>I<sub>SS1</sub></td>
<td>V<sub>N</sub> = V<sub>OUT(S)</sub> + 1.0 V,</td>
<td>35</td>
<td>65</td>
<td>μA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Current consumption during shutdown</td>
<td>I<sub>SS2</sub></td>
<td>V<sub>N</sub> = V<sub>OUT(S)</sub> + 1.0 V,</td>
<td>—</td>
<td>0.1</td>
<td>μA</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>V<sub>IN</sub></td>
<td>2.0</td>
<td>6.5</td>
<td>V</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shutdown pin input current “H”</td>
<td>V<sub>SH</sub></td>
<td>V<sub>N</sub> = V<sub>OUT(S)</sub> + 1.0 V,</td>
<td>1.5</td>
<td>—</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shutdown pin current “L”</td>
<td>V<sub>SL</sub></td>
<td>V<sub>N</sub> = V<sub>OUT(S)</sub> + 1.0 V,</td>
<td>—</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ripple rejection</td>
<td></td>
<td>V<sub>N</sub> = V<sub>OUT(S)</sub> + 1.0 V,</td>
<td>70</td>
<td>—</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-circuit current</td>
<td>I<sub>short</sub></td>
<td>V<sub>N</sub> = V<sub>OUT(S)</sub></td>
<td>450</td>
<td>—</td>
<td>mA</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

*1. V_{OUT(S)}: Specified output voltage

V_{OUT(E1)}: Actual output voltage at the fixed load

The output voltage when fixing I_{OUT}(= 30 mA) and inputting V_{OUT(S)} + 1.0 V

V_{OUT(E2)}: Actual output voltage at the fixed load

The output voltage when fixing I_{OUT}(= 80 mA) and inputting V_{OUT(S)} + 1.0 V

*2. The output current at which the output voltage becomes 95% of V_{OUT(E1)} after gradually increasing the output current.

*3. V_{drop} = V_{IN} – (V_{OUT(S)} × 0.98)

The output voltage when V_N = V_{OUT(S)} + 1.0 V and I_{OUT} = 100 mA.

V_{IN} is the input voltage at which the output voltage becomes 98% of V_{OUT(E1)} after gradually increasing the input voltage.

*4. The change in temperature [mV/°C] is calculated using the following equation.

\[
\frac{\Delta V_{\text{out}}}{\Delta T_{A}} = V_{\text{in}}(\text{V}) \times \Delta V_{\text{out}} \times \text{ppm/°C}^2 + 1000
\]

*5. Output voltage temperature coefficient

Due to restrictions on the package power dissipation, this value may not be satisfied. Attention should be paid to the power dissipation of the package when the output current is large.

Seiko Instruments Inc. 5
Test Circuits

1. Figure 4

2. Figure 5

3. Figure 6

4. Figure 7

5. Figure 8
Standard Circuit

![Circuit Diagram]

- **C**\(_{\text{IN}}\) is a capacitor for stabilizing the input.
- **C**\(_{\text{L}}\): A tantalum capacitor (2.2 \(\mu\)F or more) can be used.

Figure 9

Application Conditions

- **Input capacitor** (C\(_{\text{IN}}\)): 1.0 \(\mu\)F or more
- **Output capacitor** (C\(_{\text{L}}\)): 2.2 \(\mu\)F or more (tantalum capacitor)

Caution A general series regulator may oscillate, depending on the external components selected. Check that no oscillation occurs with the application using the above capacitor.
Explanation of Terms

1. Low dropout voltage regulator

The low dropout voltage regulator is a voltage regulator whose dropout voltage is low due to its built-in low on-resistance transistor.

2. Output voltage (V_{OUT})

The accuracy of the output voltage is ensured at $\pm1.0\%$ under the specified conditions of fixed input voltage *1, fixed output current, and fixed temperature.

*1. Differs depending the product.

Caution If the above conditions change, the output voltage value may vary and exceed the accuracy range of the output voltage. Please see the electrical characteristics and attached characteristics data for details.

3. Line regulation \(\left(\frac{\Delta V_{OUT1}}{\Delta V_{IN} \cdot V_{OUT}} \right) \)

Indicates the dependency of the output voltage on the input voltage. That is, the values show how much the output voltage changes due to a change in the input voltage with the output current remaining unchanged.

4. Load regulation (\(\Delta V_{OUT2} \))

Indicates the dependency of the output voltage on the output current. That is, the values show how much the output voltage changes due to a change in the output current with the input voltage remaining unchanged.

5. Dropout voltage (V_{drop})

Indicates the difference between the input voltage V_{IN1}, which is the input voltage (V_{IN}) at the point where the output voltage has fallen to 98% of the output voltage value V_{OUT3} after V_{IN} was gradually decreased from $V_{IN} = V_{OUT(S)} + 1.0\ V$, and the output voltage at that point ($V_{OUT3} \times 0.98$).

\[
V_{\text{drop}} = V_{IN1} - (V_{OUT3} \times 0.98)
\]
6. Temperature coefficient of output voltage \(\left(\frac{\Delta V_{\text{OUT}}}{\Delta T_a \cdot V_{\text{OUT}}} \right) \)

The shadowed area in Figure 10 is the range where \(V_{\text{OUT}} \) varies in the operating temperature range when the temperature coefficient of the output voltage is \(\pm 100 \text{ ppm/}^{\circ}\text{C} \).

\[V_{\text{OUT}}(E) \]

A change in the temperature of the output voltage [mV/°C] is calculated using the following equation.

\[
\frac{\Delta V_{\text{OUT}}}{\Delta T_a} [\text{mV/}^{\circ}\text{C}] = V_{\text{OUT}}[\text{V}]^2 \times \frac{\Delta V_{\text{OUT}}}{\Delta T_a \cdot V_{\text{OUT}}} [\text{ppm/}^{\circ}\text{C}]^3 \times 1000
\]

*1. Change in temperature of output voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient

*1. \(V_{\text{OUT(E)}} \) is the value of the output voltage measured at 25°C.
Operation

1. Basic operation

Figure 11 shows the block diagram of the S-1131 Series.

The error amplifier compares the reference voltage (V_{ref}) with V_{fb}, which is the output voltage resistance-divided by feedback resistors R_s and R_f. It supplies the output transistor with the gate voltage necessary to ensure a certain output voltage free of any fluctuations of input voltage and temperature.

![Block diagram of S-1131 Series](image)

2. Output transistor

The S-1131 Series uses a low on-resistance P-channel MOSFET as the output transistor. Be sure that V_{OUT} does not exceed $V_{\text{IN}} + 0.3$ V to prevent the voltage regulator from being damaged due to inverse current flowing from V_{OUT} pin through a parasitic diode to V_{IN} pin.
3. Shutdown pin (ON/OFF pin)

This pin starts and stops the regulator.

When the ON/OFF pin is set to the shutdown level, the operation of all internal circuits stops, and the built-in P-channel MOSFET output transistor between the VIN pin and VOUT pin is turned off to substantially reduce the current consumption. The VOUT pin becomes the Vss level due to the internally divided resistance of several MΩ between the VOUT pin and VSS pin.

The structure of the ON/OFF pin is as shown in Figure 12. Since the ON/OFF pin is neither pulled down nor pulled up internally, do not use it in the floating state. In addition, note that the current consumption increases if a voltage of 0.3 V to VIN – 0.3 V is applied to the ON/OFF pin. When the ON/OFF pin is not used, connect it to the VSS pin if the logic type is “A” and to the VIN pin if it is “B”.

<table>
<thead>
<tr>
<th>Logic Type</th>
<th>ON/OFF Pin</th>
<th>Internal Circuits</th>
<th>VOUT Pin Voltage</th>
<th>Current Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>“L”: Power on</td>
<td>Operating</td>
<td>Set value</td>
<td>I_{SS1}</td>
</tr>
<tr>
<td>A</td>
<td>“H”: Power off</td>
<td>Stopped</td>
<td>V_{SS} level</td>
<td>I_{SS2}</td>
</tr>
<tr>
<td>B</td>
<td>“L”: Power off</td>
<td>Stopped</td>
<td>V_{SS} level</td>
<td>I_{SS2}</td>
</tr>
<tr>
<td>B</td>
<td>“H”: Power on</td>
<td>Operating</td>
<td>Set value</td>
<td>I_{SS1}</td>
</tr>
</tbody>
</table>

Table 6

Figure 12

■ Selection of Output Capacitor (C_{L})

The S-1131 Series performs phase compensation using the internal phase compensator in the IC and the ESR (Equivalent Series Resistance) of the output capacitor to enable stable operation independent of changes in the output load. Therefore, always place a capacitor (C_{L}) of 2.2 µF or more between VOUT and VSS.

For stable operation of the S-1131 Series, it is essential to employ a capacitor whose ESR is within an optimum range. Using a capacitor whose ESR is outside the optimum range (approximately 0.5 to 5 Ω), whether larger or smaller, may cause an unstable output, resulting in oscillation. For this reason, a tantalum electrolytic capacitor is recommended.

When a ceramic capacitor or an OS capacitor with a low ESR is used, it is necessary to connect an additional resistor that serves as the ESR in series with the output capacitor. The required resistance value is approximately 0.5 to 5 Ω, which varies depending on the usage conditions, so perform sufficient evaluation for selection. Ordinarily, around 1.0 Ω is recommended.

Note that an aluminum electrolytic capacitor may increase the ESR at a low temperature, causing oscillation. When using this kind of capacitor, perform thorough evaluation, including evaluation of temperature characteristics.
Precautions

- Wiring patterns for the VIN, VOUT and GND pins should be designed so that the impedance is low. When mounting an output capacitor, the distance from the capacitor to the VOUT pin and to the VSS pin should be as short as possible.
- Note that the output voltage may increase when a series regulator is used at low load current (1.0 mA or less).
- This IC performs phase compensation by using an internal phase compensator and the ESR of an output capacitor. Therefore, always place a capacitor of 2.2 μF or more between VOUT and VSS. A tantalum type capacitor is recommended. Moreover, to secure stable operation of the S-1131 Series, it is necessary to employ a capacitor with an ESR within an optimum range (0.5 to 5 Ω). Using a capacitor whose ESR is outside the optimum range (approximately 0.5 to 5 Ω), whether larger or smaller, may cause an unstable output, resulting in oscillation. Perform sufficient evaluation under the actual usage conditions for selection.
- The voltage regulator may oscillate when the impedance of the power supply is high and the input capacitor is small or an input capacitor is not connected.
- The application conditions for the input voltage, output voltage, and load current should not exceed the package power dissipation.
- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.
- In determining the output current, attention should be paid to the output current value specified in Table 5 in the electrical characteristics and footnote *5) of the table.
- SII claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.
Typical Characteristics

(1) Output voltage vs. Output current (when load current increases)

S-1131B15 (Ta = 25°C)

![Graph showing output voltage vs. output current for S-1131B15](image)

S-1131B30 (Ta = 25°C)

![Graph showing output voltage vs. output current for S-1131B30](image)

Remark: In determining the output current, attention should be paid to the following.
1) The minimum output current value and footnote *5 in the electrical characteristics
2) The package power dissipation

(2) Output voltage vs. Input voltage

S-1131B15 (Ta = 25°C)

![Graph showing output voltage vs. input voltage for S-1131B15](image)

S-1131B30 (Ta = 25°C)

![Graph showing output voltage vs. input voltage for S-1131B30](image)
(3) Dropout voltage vs. Output current

S-1131B15

![Dropdown voltage vs. Output current for S-1131B15](image)

S-1131B50

![Dropdown voltage vs. Output current for S-1131B50](image)

(4) Dropout voltage vs. Set output voltage

![Dropdown voltage vs. Set output voltage](image)
(5) Output voltage vs. Ambient temperature

S-1131B15

S-1131B30

S-1131B50

(6) Current consumption vs. Input voltage

S-1131B15

S-1131B30

S-1131B50
HIGH RIPPLE-REJECTION LOW DROPOUT MIDDLE OUTPUT CURRENT CMOS VOLTAGE REGULATOR
S-1131 Series

(7) Ripple rejection

S-1131B15 (Ta = 25°C)

$V_{IN} = 2.5\, \text{V}, \, C_{OUT} = 2.2\, \mu\text{F}$

S-1131B30 (Ta = 25°C)

$V_{IN} = 4.0\, \text{V}, \, C_{OUT} = 2.2\, \mu\text{F}$

S-1131B50 (Ta = 25°C)

$V_{IN} = 6.0\, \text{V}, \, C_{OUT} = 2.2\, \mu\text{F}$
Reference Data

(1) Input transient response characteristics

\[I_{OUT} = 80 \, \text{mA}, \, t_r = t_f = 5.0 \, \mu \text{F}, \, C_{OUT} = 2.2 \, \mu \text{F}, \, C_{IN} = 0 \, \mu \text{F} \]

(2) Load transient response characteristics

\[V_{IN} = 4.0 \, \text{V}, \, C_{OUT} = 2.2 \, \mu \text{F}, \, C_{IN} = 1.0 \, \mu \text{F}, \]

\[I_{OUT} = 50 \rightarrow 100 \, \text{mA} \]

(3) Shutdown pin transient response characteristics

S-1131B15 (Ta = 25°C)

\[V_{IN} = 2.5 \, \text{V}, \, C_{OUT} = 2.2 \, \mu \text{F}, \, C_{IN} = 1.0 \, \mu \text{F} \]

S-1131B30 (Ta = 25°C)

\[V_{IN} = 4.0 \, \text{V}, \, C_{OUT} = 4.7 \, \mu \text{F}, \, C_{IN} = 1.0 \, \mu \text{F} \]

S-1131B50 (Ta = 25°C)

\[V_{IN} = 6.0 \, \text{V}, \, C_{OUT} = 2.2 \, \mu \text{F}, \, C_{IN} = 1.0 \, \mu \text{F} \]
SOT-89-5

Dimensions

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5±0.1</td>
<td>1.5±0.1</td>
<td>1.5±0.1</td>
<td>1.6±0.2</td>
<td>4.5±0.1</td>
</tr>
<tr>
<td>0.4±0.1</td>
<td>0.4±0.1</td>
<td>0.4±0.1</td>
<td>0.65 min.</td>
<td>2.5±0.1</td>
</tr>
</tbody>
</table>

Taping Specifications

- Feed direction

Reel Specifications

1 reel holds 1000 ICs.

Unit:mm

No. UP005-A-P-SD-1.0

No. UP005-A-R-SD-1.0
6-Pin HSON(A)

- **Dimensions**

 - 0.5 typ.
 - 2.90 ± 0.1
 - 2.80 ± 0.1
 - 0.1 ± 0.1
 - 1.5 ± 0.1
 - 0.80 ± 0.1
 - 0.30 ± 0.1
 - 0.95 ± 0.05

- **Tape Specifications**

 - Feed direction

- **Reel Specifications**

 - Enlarged drawing in the central part

No. PD006-A-C-SD-1.0

No. PD006-A-R-SD-1.0

Unit: mm
The information described herein is subject to change without notice.

Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.

When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority.

Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited.

The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.

Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.