
1

Automated Flashing and Testing
for Continuous Integration

Igor Stoppa

Embedded Linux Conference
North America 2015

2

Automated Flasher Tester
AFT

Tool for deploying and verifying a SW image on an
appropriate target HW device.

● Easily integrate with existing setup.
● Minimize requirements of the setup (including cost).
● Easily scale both the number and the type of units.
● Minimal deployment & testing time.
● Keep close to real life conditions.
● Enable Developers to test before submitting,

using identical means of verification.

3

Continuous Integration

Merge contributions often, even multiple times per day,
but only if they meet the following requirements:

1. Patches must apply cleanly.
2. Patched SW must build cleanly - at least not worse than pre-

patching.
3. Generated SW image must deploy successfully to the Device

Under Test (DUT).
4. Deployed SW image must boot.
5. Deployed image must pass a set of predefined test cases.

Only what is tested can be expected to work.

4

Why yet another tool?

● Several proprietary solutions available but:
○ focused only on one architecture
○ non open source - hinders sharing publicly testing methods / results

● Other public solutions, ex: LAVA (Linaro)
○ not alternative, rather complementary
○ LAVA provides lots of infrastructure (queuing, result visualization,

etc.)
AFT focuses on optimizing deployment and test execution.

● Let developers use locally exactly the same test configuration used by CI.
○ install and configure the tool painlessly

5

Woes of Continuous Integration

Speed: building and testing can take a long time, but it’s needed frequently

● parallelize sw build - throw in more servers
● parallelize testing - but deployng the SW image can still take a long time!

Multiple-targets: supporting multiple platform/arch is resources-intensive

● build infrastructure can adjust (run different cross compilers/qemu)
● each new type of HW needs ad-hoc work: expensive and slow.
● during the project the HW to support will likely change.

Optimizing Deployment & Testing can have high returns.

6

Interaction with DUT
Standardize the interaction: do not use specific interfaces/APIs.
Rather, emulate the user:
● plug/unplug power
● enter data from a (USB) keyboard
● issue commands to transfer data over a network connection.

Deployment of SW image to test
Deploy the same image produced by the build system, directly to the DUT.
Allow passwordless login by injecting the ssh public key of the testing harness,
for the root user.

Key Features

7

High level view

Build Cloud or
Developer’s
workstation

DUT 1.1

Testing
Harness 1

Testing
Harness 2

Testing
Harness n

DUT 1.2

DUT 1.m

...

DUTs
associated
to Testing
Harness 2

...

DUTs
associated
to Testing
Harness n

8

Simplified Model

Build Cloud or
Developer’s
workstation

Testing
Harness

(PC)

DUT
(ex: MinnowMax)

Mains

Power-cycling

USB
keyboard
emulator

User-input emulation

DNS
DHCP
NFS Local NetworkSW Image

Test
Results

OpenSUSE
USB key

9

HW configuration

1

2

3

4

6 7

8

5

1. MinnowBoard Max

2. Minnow Power Supply

3. USB-controlled power

cutter.

4. OpenSUSE Thumb drive

5. SD Card (target media)

6. Arduino UNO R3

7. USB to Serial port

Control interface for UNO

8. Programming toggle for UNO

USB port.

9. Ethernet port

9

10

SW Stack & Data

AFT-Core
module

Power Control Plugin

DUT Plugins:
● remote access (ex: ssh)
● remote OS deployment
● device identification

Test Cases Plugins:
● execution of basic

commands
● system services
● ...

Test Plan

Devices Types

Actual Topology

11

Main Steps
(ex: MinnowBoard Max)

1. Verify compatibility: is the image supported and is there a suitable device?

2. Allocate device compatible with the SW image.

3. Power-cycle and boot the DUT into service mode from the OpenSUSE USB key.

4. Deploy the test SW image to the target storage - it is taken from an nfs share.

5. Install the public ssh key used by the Testing Harness for the DUT root user.

6. Power-cycle and boot the DUT into testing mode, from the image just

deployed.

7. Check for availability and run the selected test plan.

8. Report back the test results, in xUnit format.

12

But it was not always easy ...
System Partitioning: many SW components are specific to the HW they drive
(ex: power switch) and the interface used must support various models from
different vendors.

BIOS configuration: some (most?) BIOSes rearrange the sequence of the boot
devices, others can completely lose their settings when the DUT is power-
cycled - the only foolproof solution is to reconfigure the BIOS at each iteration.

More BIOS blues: at some point one device changed autonomously MAC address
- reason still unknown.
System Architecture: initial idea - Testing Harness as VM - qemu cannot
reliably pass to the VM 2+ USB devices with same VendorID:DeviceID - Doh.
Network Interfaces: OpenSUSE network manager (wicked) cannot bring up
interfaces with static IP and no carrier.

USB thumb drives: some brands dropped like flies, after undergoing only a few
power-cycles.

13

USB Keyboard Emulation
● Based on Arduino UNO R3, the only one

currently capable of interfacing with
BIOSes

● Uses LUFA FW to emulate the USB
protocol.

● Uses only libraries with GPLv2
compatible license.

● Messaging protocol to detect data losses
● It costs ~ $7, while the cheapest

commercial alternative is above $100
● Supports:

○ record/playback of keys
○ LibreOffice Calc sheet
○ sequence generated on-the-fly

Testing
Harness

DUT

USB
Master

USB
Master

Arduino
UNO R3

2nd
ATMega

SW
Serial

USB to
Serial

14

Does it meet the requirements?

All the requirements were met:
● The only requirement toward the target OS is to provide means for

login access.
● Adding support for new OS (Yocto) and new HW (NUC,

MinnowBoardMax) took less than a week.
● Depending on the performance of the DUT, a deployment & basic

testing session can last between 3 and 10 minutes.
● The BOM per-device is fairly frugal and relies solely on inexpensive off-

the shelf CE devices, easily obtainable in large amounts, worldwide.
● Everything, from the SW to the HW setup, is public and can be

reproduced anywhere.

15

Ideas for future development

● Support more architectures/boards.

Ex: Edison, Quark, BeagleBone Black, WandBoard Quad, ODroid.

● Support more flavors of power cutter.

Ex: ethernet controlled.

● Replace USB-Serial interface with ethernet.

● Use Edison as testing harness, rather than a PC.

● Support test cases run with fMBT (https://01.org/fmbt)

https://01.org/fmbt

16

References

Automated Flasher Tester:
https://github.com/igor-stoppa - all the aft-* projects

USB Keyboard Emulator (Peripheral EMulator):
https://github.com/igor-stoppa/pem

https://github.com/igor-stoppa
https://github.com/igor-stoppa

Q & A

