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Limits to “Running Up The Clock”Limits to “Running Up The Clock”

Processor Frequency is the Dominant Factor in Performance, but...

As Processor Frequency Goes Up, Processor Efficiency Goes Down
Memory subsystems aren’t keeping up – Cache misses are 
relatively more and more expensive.
Key Applications use External Logic and Co-processors with High 
Access Latencies, e.g. Network Classification Engines

∴ Increasing Proportion of Processor Bandwidth Wasted on Stalls

Best-known Techniques to Improve Efficiency are Expensive in Area 
and Power for Embedded Applications and Limited in Effectiveness

Out-of-order Execution
Multilevel Branch and Value Prediction
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How We Visualize RISC Instruction Flow…How We Visualize RISC Instruction Flow…
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…And How It Really Behaves.…And How It Really Behaves.
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Frequency and Memory LatencyFrequency and Memory Latency
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If Latency Guarantees That A Single Instruction Stream 
Cannot Keep A Pipeline Busy,

Then One Pipeline Can Service 
More Than One Concurrent Instruction Stream

In Less Time Than It Would Take
To Run The Instruction Streams Serially 

The Multithreading Hypothesis:The Multithreading Hypothesis:

T1

T2

< T1 + T2
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Multithreading to Hide LatencyMultithreading to Hide Latency

When one instruction stream is blocked, run another
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Multithreading to Reduce Other Overheads Multithreading to Reduce Other Overheads 

No need to save previous context, or set up a new one, on an 

event driven pre-emption

No need to block all other processing for long periods when 

interfacing with slow I/O and coprocessors (e.g. Packet 

Classification Engines)

Memory-mapped I/O logic (e.g. FIFOs) can drive scheduling

The “Right” Number of Threads may thus be greater than the 

number needed to cover for memory latency.
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The MIPS® MT ASE: Basic ConceptsThe MIPS® MT ASE: Basic Concepts

A VPE (Virtual Processing Element) is an instance of the MIPS32® or 

MIPS64® instruction set and privileged architectures. Can run an OS.

A TC (Thread Context) is an instance of the MIPS32 or MIPS64 

application programming model - registers plus access to an address 

space. Can run a user-mode binary.

A multi-VPE processor behaves like a closely-coupled SMP 

configuration, and can run existing SMP OS software.

A multi-TC VPE supports finer grain parallelism, but requires new OS 

support for TC management and MIPS MT exceptions.
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Software Visible Processor State Consists of User and PRA Registers
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Status
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The MIPS® MT ASE: New InstructionsThe MIPS® MT ASE: New Instructions

FORK allocates a TC and sets it running

YIELD causes rescheduling/reallocation

MFTR moves values from a targeted TC to a GPR

MTTR moves values to a targeted TC from a GPR

DMT disables multithreading on a VPE

EMT enables multithreading on a VPE

DVPE disables multithreading across all VPEs on a processor

EVPE enables multithreading across all VPEs on a processor
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The MIPS® MT ASE: FORKThe MIPS® MT ASE: FORK

FORK rd,rs,rt

Allocate a new TC, to begin execution starting with the instruction at 

the address in rs with the value in the FORKing TC’s register rt

copied into the new TC’s register rd.
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The MIPS® MT ASE: YIELDThe MIPS® MT ASE: YIELD

YIELD $0

Terminate thread, de-allocate TC

YIELD rd,rs

If rs = -1, update TC schedule and re-run when possible

If rs > 0, re-run when selected YIELD Qualifier inputs are active

rd gets sampled value of YIELD Qualifier inputs

MIPS MT
Core

YQ4
YQ3
YQ2
YQ1
YQ0

# Wait for FIFO full
ADDIU $4,$0,1
YIELD $0,$4
# Now read FIFO
LW $7,0($12)
…

YIELD will block until
YQ0 signal asserted

By FIFO Logic

FIFO
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The MIPS® MT ASE: MFTR/MTTRThe MIPS® MT ASE: MFTR/MTTR

Move value to/from another VPE or TC

TC selected by TargTC field of VPEControl CP0 Register

Allows access to GPRs, Hi/Lo, CP0, CP1, CP2 registers

VPE selected is VPE “containing” the target TC

Cross-VPE accesses allowed only for “privileged” or “master” 

VPEs 
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The MIPS® MT ASE: EMT/DMT, EVPE/DVPEThe MIPS® MT ASE: EMT/DMT, EVPE/DVPE

Enable/Disable pairs to force serial execution on a single VPE 

(EMT/DMT) or across all VPEs on a processor (EVPE/DVPE)

Handy for OS critical regions around use of shared resources

– Global OS Memory Variables

– Shared CP0 Resources (e.g. VPEControl)

– Safe and Easy to Use within Exception Handlers

EVPE/DVPE allowed only for “privileged” or “master” VPEs 
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The MIPS® MT ASE: ExceptionsThe MIPS® MT ASE: Exceptions

Exception Logic Instantiated per-VPE

– VPEs can service exceptions concurrently

Exception Logic Shared among TCs on a VPE

– Setting EXL/ERL or entering Debug mode suspends all TCs except 

the one servicing the exception

– ERET re-enables multithreaded operation of a VPE
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Linux Kernel Abstraction of an SMP ProcessorLinux Kernel Abstraction of an SMP Processor
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SMP Linux Kernel on MIPS MT VPEs (SMVP)SMP Linux Kernel on MIPS MT VPEs (SMVP)
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Linux for Symmetric Multiple Virtual Processors: 
Multitasking Throughput with Legacy Binaries
Linux for Symmetric Multiple Virtual Processors: 
Multitasking Throughput with Legacy Binaries

Each program/thread sees a different MIPS32 “Processor”

SMP Linux Schedules tasks on multiple VPEs as if they were CPUs

Speedup less than SMP, but significant

MIPS
34K
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Less performance gain 
but much lower area, 
power consumption, than 
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For MIPS® 34K™, 
performance gains far 
outweighs costs (e.g. 60% 
speedup for 14% area 
growth)

But limited to 2-way SMP

Cache Miss
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Interrupt

Instr 1-1
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SMTC on one VPESMTC on one VPE
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UnusedUnused

Optimizing MIPS® MT VPE/TC ConfigurationOptimizing MIPS® MT VPE/TC Configuration

34K Core TCs Assigned 

to VPEs at Boot Time
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SMTC on Multiple VPEsSMTC on Multiple VPEs
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SMTC: The Easy PartsSMTC: The Easy Parts

Set up a cpu_data array entry for each TC, add new tc_id and vpe_id
fields.

In kernel macros, replace use of standard MIPS Status.IE bit for
interrupt enable/disable with manipulation of per-TC TCStatus.IXMT

Have SMP initialization set up each “secondary” TC to start up 
executing smp_bootstrap code.

Protect read-modify-writes of per-VPE registers (e.g. Status) and 
cache/TLB management operations with lock or DMT-based critical 
regions.
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SMTC Challenges: Interrupt ManagementSMTC Challenges: Interrupt Management

“Convoying” of Threads into Interrupt Handlers
Interrupt inputs to MIPS MT core are per-VPE, serviced 
opportunistically by available TCs
Standard MIPS Linux kernel passes from “EXL” exception state to 
local CPU interrupt disable state before any “ack” by handler. 
Clearing VPE-wide exception state allows other TCs to run and 
attempt service

Solution: Selectively Inhibit Interrupt Levels per-VPE during IRQ 
service dispatch

While still in exception state, clear the VPE-level Interrupt Mask 
bit for the interrupt under service
Optimally, restore mask in SMTC-aware interrupt controller 
“ack(irq,…)” function
If not handled explicitly, mask is restored on return from interrupt
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SMTC Challenges: Inter-Processor InterruptsSMTC Challenges: Inter-Processor Interrupts

SMP Linux kernel requires that IPIs be directed to any/all “CPUs”
Software interrupts, like HW inputs in MIPS MT, are per-VPE

Solution: Use MIPS MT MFTR/MTTR instructions to emulate per-
TC interrupts

IPI dispatch between TCs of a VPE done by halting target, 
extracting, pre-saving, and modifying some state to force kernel 
mode execution of pseudo-vector, then un-halting.
More work by sender than conventional I/O operations to activate
a physical interprocessor interrupt, but less work by receiver, as 
interrupt is “pre-decoded” to an IPI vector.
If TC is in an interrupt-inhibited state, IPI is queued and picked up 
on next interrupt, context restore, or entry into kernel idle loop.
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SMTC Challenges: Shared TLB, ASIDsSMTC Challenges: Shared TLB, ASIDs

SMP Linux kernel sensibly assumes each CPU has its own TLB
Address space Ids (ASIDs) must be unique across a VPE to 
avoid conflicts in shared TLB
Shared ASID space means more than one value may be “live” at 
one time, breaking assumptions in allocation/generation code.

Solution: Explicitly Manage ASIDs as a pooled resource
Replace use of per-CPU ASID on each memory map with a 
single ASID across all “CPUs”.
On “roll-over” of ASID “generation”, generate table of “surviving” 
ASIDs that are still in use for other TCs,  and keep them from 
being reused until they are retired from the TLB previous use.
Reduction in TLB “thrashing” by having a single entry usable by 
all TCs offsets overhead of global management per-VPE.
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SMTC Challenges: FPU Context ManagementSMTC Challenges: FPU Context Management

MIPS 34Kf has Single FPU Context but up to 5 TCs
Only one TC can be allowed to issue FP instructions at a time
Difference between FPU execution and kernel FP emulation is a 
factor of roughly 100 in performance

Solution: Heuristic-based dynamic FPU Affinity
Exploits CPU affinity hooks already in SMP Linux scheduler
When more than N FPU emulations are done by a Linux thread in 
a single time-slice, make it eligible to run only on TC with FPU
When no FP instructions have been issued during a time-slice by 
a thread with such FPU affinity, remove constraint.
Provides near-optimal FP performance of legacy binaries with 
very low overhead.
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SummarySummary

SMTC Linux for MIPS MT builds on robust existing MIPS SMP Linux 
support

SMTC supports a larger number of virtual processors at a lower 
hardware cost per processor

Overhead of SMTC support in Linux is measurable but far smaller 
than the potential performance gain of the greater concurrency

SMTC imposes no application code changes to support thread 
libraries (NPTL, pthreads) on top of hardware TCs

SMTC Linux kernel sources for the 34K will be available soon at
www.linux-mips.org (if they aren’t already).

http://www.linux-mips.org/
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