
At the core of the user experience.®

MIPS Technologies Proprietary and Confidential

Microthreads as Linux CPUs:
SMTC Linux for MIPS MT Cores

April 11, 2006
Kevin D. Kissell

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

1. Basic Multithreading Concepts

2. The MIPS MT ASE

3. From SMP Linux to SMTC Linux

AgendaAgenda

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

Limits to “Running Up The Clock”Limits to “Running Up The Clock”

Processor Frequency is the Dominant Factor in Performance, but...

As Processor Frequency Goes Up, Processor Efficiency Goes Down
Memory subsystems aren’t keeping up – Cache misses are
relatively more and more expensive.
Key Applications use External Logic and Co-processors with High
Access Latencies, e.g. Network Classification Engines

∴ Increasing Proportion of Processor Bandwidth Wasted on Stalls

Best-known Techniques to Improve Efficiency are Expensive in Area
and Power for Embedded Applications and Limited in Effectiveness

Out-of-order Execution
Multilevel Branch and Value Prediction

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

How We Visualize RISC Instruction Flow…How We Visualize RISC Instruction Flow…

Time

Pr
og

ra
m

 C
o u

n t
er

lw

mfhi
mult

add

add

mult

lw

mfhi
add

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

…And How It Really Behaves.…And How It Really Behaves.

Time

Pr
og

ra
m

 C
o u

n t
er

8-40 Ins/miss

~60 cycles @ 500MHz

Memory Access

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

Frequency and Memory LatencyFrequency and Memory Latency

0%

20%

40%

60%

80%

100%

0 400 800 1200 1600 2000 2400 2800 3200

MHz

Ef
fic

ie
nc

y 8 cache misses per
1000 instructions
40 cache misses per
1000 instructions

Execution speedup with frequency is limited by memory speed

Assumes 125ns to critical data word

“Efficiency” is ratio of
“ideal” execution time

to expected execution time

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

If Latency Guarantees That A Single Instruction Stream
Cannot Keep A Pipeline Busy,

Then One Pipeline Can Service
More Than One Concurrent Instruction Stream

In Less Time Than It Would Take
To Run The Instruction Streams Serially

The Multithreading Hypothesis:The Multithreading Hypothesis:

T1

T2

< T1 + T2

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

Multithreading to Hide LatencyMultithreading to Hide Latency

When one instruction stream is blocked, run another

A0
A0

Thread A
Instruction

Stream
A0
A1
A2
.
.

An

A1
A1

(Stall)(Stall)

(Stall)(Stall)

(Stall)(Stall)

Thread A
Instruction

Stream
A0
A1
A2
.
.

An

Thread B
Instruction

Stream
B0
B1
B2
.
.

Bn

A0
A0

A1
A1

B0
B0

B1
B1

B2
B2

Issue C
ycles

Issue C
ycles(Thread Switch)

Cache Miss

Fill Done

Cache Miss

Fill Done

A2
A2

(Thread Switch)
A2

A2

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

Multithreading to Reduce Other Overheads Multithreading to Reduce Other Overheads

No need to save previous context, or set up a new one, on an

event driven pre-emption

No need to block all other processing for long periods when

interfacing with slow I/O and coprocessors (e.g. Packet

Classification Engines)

Memory-mapped I/O logic (e.g. FIFOs) can drive scheduling

The “Right” Number of Threads may thus be greater than the

number needed to cover for memory latency.

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

The MIPS® MT ASE: Basic ConceptsThe MIPS® MT ASE: Basic Concepts

A VPE (Virtual Processing Element) is an instance of the MIPS32® or

MIPS64® instruction set and privileged architectures. Can run an OS.

A TC (Thread Context) is an instance of the MIPS32 or MIPS64

application programming model - registers plus access to an address

space. Can run a user-mode binary.

A multi-VPE processor behaves like a closely-coupled SMP

configuration, and can run existing SMP OS software.

A multi-TC VPE supports finer grain parallelism, but requires new OS

support for TC management and MIPS MT exceptions.

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

Software Visible Processor State Consists of User and PRA Registers

MDU

$3

$5

MIPS32 ISA and Privileged ResourcesMIPS32 ISA and Privileged ResourcesMIPS32 ISA and Privileged Resources

ALU

GPRs

LD/ST

MMU

ICU

TLB
Lo

Count
Compare

Status

EntryHi
EntryLo

Hi

$0
$1

$31 PC

MIPS32 Programming Model MIPS32 CP0 Privileged Resources

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

Status

PC

$3

$5

$0
$1

$31

LoHi

Replicate Only What Is Needed for User Mode Concurrency

MDU

$3

$5

A Multithreaded Processor with 2 TCsA Multithreaded Processor with 2 TCs

ALU

GPRs

LD/ST

MMU

ICU

TLB
Lo

Count
Compare

Status

EntryHi
EntryLo

Hi

$0
$1

$31 PC

MIPS32 Programming Model MIPS32 CP0 Privileged Resources

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

$3

$5
GPRs

$0
$1

$31

Count
Compare

Status

EntryHi
EntryLo

PC

LoHi

Replicate Full “Virtual Processor” State, Sharing Execution Units

MDU

$3

$5

A Virtual Multiprocessor with 2 VPEsA Virtual Multiprocessor with 2 VPEs

ALU

GPRs

LD/ST

MMU

ICU

TLB
Lo

Count
Compare

Status

EntryHi
EntryLo

Hi

$0
$1

$31 PC

MIPS32 Programming Model MIPS32 Privileged Resources

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

EntryHi
EntryLo

Count
Compare

PC
PC

$3

$5

$0
$1$3

$5

$0
$1

$31
$31

LoHi
LoHi

Status

PC

$3

$5

$0
$1

$31

LoHi

2 VPEs with 4 TCs Between Them

MDU

$3

$5

A Multithreaded, Virtual MultiprocessorA Multithreaded, Virtual Multiprocessor

ALU

GPRs

LD/ST

MMU

ICU

TLB
Lo

Count
Compare

Status

EntryHi
EntryLo

Hi

$0
$1

$31 PC

MIPS32 Programming Model MIPS32 CP0 Privileged Resources

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

The MIPS® MT ASE: New InstructionsThe MIPS® MT ASE: New Instructions

FORK allocates a TC and sets it running

YIELD causes rescheduling/reallocation

MFTR moves values from a targeted TC to a GPR

MTTR moves values to a targeted TC from a GPR

DMT disables multithreading on a VPE

EMT enables multithreading on a VPE

DVPE disables multithreading across all VPEs on a processor

EVPE enables multithreading across all VPEs on a processor

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

The MIPS® MT ASE: FORKThe MIPS® MT ASE: FORK

FORK rd,rs,rt

Allocate a new TC, to begin execution starting with the instruction at

the address in rs with the value in the FORKing TC’s register rt

copied into the new TC’s register rd.

$3

$5
GPRs

$0
$1

$31

$3

$5
GPRs

$0
$1

$31PC PC

FORK $3,$5,$1

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

The MIPS® MT ASE: YIELDThe MIPS® MT ASE: YIELD

YIELD $0

Terminate thread, de-allocate TC

YIELD rd,rs

If rs = -1, update TC schedule and re-run when possible

If rs > 0, re-run when selected YIELD Qualifier inputs are active

rd gets sampled value of YIELD Qualifier inputs

MIPS MT
Core

YQ4
YQ3
YQ2
YQ1
YQ0

Wait for FIFO full
ADDIU $4,$0,1
YIELD $0,$4
Now read FIFO
LW $7,0($12)
…

YIELD will block until
YQ0 signal asserted

By FIFO Logic

FIFO

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

The MIPS® MT ASE: MFTR/MTTRThe MIPS® MT ASE: MFTR/MTTR

Move value to/from another VPE or TC

TC selected by TargTC field of VPEControl CP0 Register

Allows access to GPRs, Hi/Lo, CP0, CP1, CP2 registers

VPE selected is VPE “containing” the target TC

Cross-VPE accesses allowed only for “privileged” or “master”

VPEs

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

The MIPS® MT ASE: EMT/DMT, EVPE/DVPEThe MIPS® MT ASE: EMT/DMT, EVPE/DVPE

Enable/Disable pairs to force serial execution on a single VPE

(EMT/DMT) or across all VPEs on a processor (EVPE/DVPE)

Handy for OS critical regions around use of shared resources

– Global OS Memory Variables

– Shared CP0 Resources (e.g. VPEControl)

– Safe and Easy to Use within Exception Handlers

EVPE/DVPE allowed only for “privileged” or “master” VPEs

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

The MIPS® MT ASE: ExceptionsThe MIPS® MT ASE: Exceptions

Exception Logic Instantiated per-VPE

– VPEs can service exceptions concurrently

Exception Logic Shared among TCs on a VPE

– Setting EXL/ERL or entering Debug mode suspends all TCs except

the one servicing the exception

– ERET re-enables multithreaded operation of a VPE

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

Linux Kernel Abstraction of an SMP ProcessorLinux Kernel Abstraction of an SMP Processor

MMU Context

Reg.
File Intrpt. Mask

Timer

Hardware State that Defines a “CPU” to software

MMU Context

Reg.
File Intrpt. Mask

Timer

SMP Linux Kernel

Linux “CPU” Linux “CPU”

CPU 0 CPU 1

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

SMP Linux Kernel on MIPS MT VPEs (SMVP)SMP Linux Kernel on MIPS MT VPEs (SMVP)

MMU Context

Reg.
File Intrpt. Mask

Timer

MMU Context

Reg.
File Intrpt. Mask

Timer

SMP Linux Kernel

Linux “CPU” Linux “CPU”

CPU 0 CPU 1VPE 0 VPE 1

MIPS® 34K™ Core

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

Linux for Symmetric Multiple Virtual Processors:
Multitasking Throughput with Legacy Binaries
Linux for Symmetric Multiple Virtual Processors:
Multitasking Throughput with Legacy Binaries

Each program/thread sees a different MIPS32 “Processor”

SMP Linux Schedules tasks on multiple VPEs as if they were CPUs

Speedup less than SMP, but significant

MIPS
34K

VPE 0 VPE 1

Instr 0-1
Instr 0-2

Instr 0-3
Instr 0-4
Instr 0-5

Instr 1-2
Instr 1-3
Instr 1-4

Instr 1-5

T
im

e

Less performance gain
but much lower area,
power consumption, than
multi-core

For MIPS® 34K™,
performance gains far
outweighs costs (e.g. 60%
speedup for 14% area
growth)

But limited to 2-way SMP

Cache Miss

CPU “Wait”

Interrupt

Instr 1-1

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

SMTC on one VPESMTC on one VPE

MMU Context

TC0
Reg.
File Intrpt. Mask

MMU Context

TC1
Reg.
File Intrpt. Mask

SMP Linux Kernel

Linux “CPU” Linux “CPU”

VPE Timer

MMU Context

Timer Timer

TC0 TC1
VPE0

MIPS 34K Core

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

UnusedUnused

Optimizing MIPS® MT VPE/TC ConfigurationOptimizing MIPS® MT VPE/TC Configuration

34K Core TCs Assigned

to VPEs at Boot Time

Thread
Context 0

VPE
Context 0

TLB Entries

Thread
Context 0

VPE
Context 0

VPE 0 TLB

VPE
Context 1

VPE 0
Thread

Context 0

VPE
Context 0

VPE 0 TLB

VPE
Context 1

VPE 1 TLB

VPE 1
Thread

Context 0

Reset State

Bind 4 Threads and all

TLB Entries to VPE 0

Bind 2 Thread and half of

TLB Entries to each of

VPE 0 and VPE 1

Common
Logic

Common
Logic

1 2

Common Logic

3

1 2 3

1 1

1

+
(Shared Mode)

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

SMTC on Multiple VPEsSMTC on Multiple VPEs

TC0
Reg.
File,

Intrpt.
Mask

Timer

SMP Linux Kernel

Linux “CPU”

Linux “CPU” Linux “CPU”

MMU Context

TC1
Reg.
File,

Intrpt.
Mask

Timer

MMU Context

TC2
Reg.
File,

Intrpt.
Mask

Timer

TC3
Reg.
File,

Intrpt.
Mask

Timer

MMU Context

VPE1Timer

Linux “CPU”

MMU Context

Shared MMU Context

VPE0 Timer

VPE 0 VPE 1

MIPS 34K Core

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

SMTC: The Easy PartsSMTC: The Easy Parts

Set up a cpu_data array entry for each TC, add new tc_id and vpe_id
fields.

In kernel macros, replace use of standard MIPS Status.IE bit for
interrupt enable/disable with manipulation of per-TC TCStatus.IXMT

Have SMP initialization set up each “secondary” TC to start up
executing smp_bootstrap code.

Protect read-modify-writes of per-VPE registers (e.g. Status) and
cache/TLB management operations with lock or DMT-based critical
regions.

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

SMTC Challenges: Interrupt ManagementSMTC Challenges: Interrupt Management

“Convoying” of Threads into Interrupt Handlers
Interrupt inputs to MIPS MT core are per-VPE, serviced
opportunistically by available TCs
Standard MIPS Linux kernel passes from “EXL” exception state to
local CPU interrupt disable state before any “ack” by handler.
Clearing VPE-wide exception state allows other TCs to run and
attempt service

Solution: Selectively Inhibit Interrupt Levels per-VPE during IRQ
service dispatch

While still in exception state, clear the VPE-level Interrupt Mask
bit for the interrupt under service
Optimally, restore mask in SMTC-aware interrupt controller
“ack(irq,…)” function
If not handled explicitly, mask is restored on return from interrupt

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

SMTC Challenges: Inter-Processor InterruptsSMTC Challenges: Inter-Processor Interrupts

SMP Linux kernel requires that IPIs be directed to any/all “CPUs”
Software interrupts, like HW inputs in MIPS MT, are per-VPE

Solution: Use MIPS MT MFTR/MTTR instructions to emulate per-
TC interrupts

IPI dispatch between TCs of a VPE done by halting target,
extracting, pre-saving, and modifying some state to force kernel
mode execution of pseudo-vector, then un-halting.
More work by sender than conventional I/O operations to activate
a physical interprocessor interrupt, but less work by receiver, as
interrupt is “pre-decoded” to an IPI vector.
If TC is in an interrupt-inhibited state, IPI is queued and picked up
on next interrupt, context restore, or entry into kernel idle loop.

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

SMTC Challenges: Shared TLB, ASIDsSMTC Challenges: Shared TLB, ASIDs

SMP Linux kernel sensibly assumes each CPU has its own TLB
Address space Ids (ASIDs) must be unique across a VPE to
avoid conflicts in shared TLB
Shared ASID space means more than one value may be “live” at
one time, breaking assumptions in allocation/generation code.

Solution: Explicitly Manage ASIDs as a pooled resource
Replace use of per-CPU ASID on each memory map with a
single ASID across all “CPUs”.
On “roll-over” of ASID “generation”, generate table of “surviving”
ASIDs that are still in use for other TCs, and keep them from
being reused until they are retired from the TLB previous use.
Reduction in TLB “thrashing” by having a single entry usable by
all TCs offsets overhead of global management per-VPE.

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

SMTC Challenges: FPU Context ManagementSMTC Challenges: FPU Context Management

MIPS 34Kf has Single FPU Context but up to 5 TCs
Only one TC can be allowed to issue FP instructions at a time
Difference between FPU execution and kernel FP emulation is a
factor of roughly 100 in performance

Solution: Heuristic-based dynamic FPU Affinity
Exploits CPU affinity hooks already in SMP Linux scheduler
When more than N FPU emulations are done by a Linux thread in
a single time-slice, make it eligible to run only on TC with FPU
When no FP instructions have been issued during a time-slice by
a thread with such FPU affinity, remove constraint.
Provides near-optimal FP performance of legacy binaries with
very low overhead.

At the core of the user experience.TM

MIPS Technologies Proprietary and Confidential

SummarySummary

SMTC Linux for MIPS MT builds on robust existing MIPS SMP Linux
support

SMTC supports a larger number of virtual processors at a lower
hardware cost per processor

Overhead of SMTC support in Linux is measurable but far smaller
than the potential performance gain of the greater concurrency

SMTC imposes no application code changes to support thread
libraries (NPTL, pthreads) on top of hardware TCs

SMTC Linux kernel sources for the 34K will be available soon at
www.linux-mips.org (if they aren’t already).

http://www.linux-mips.org/

	Microthreads as Linux CPUs:�SMTC Linux for MIPS MT Cores
	Limits to “Running Up The Clock”
	How We Visualize RISC Instruction Flow…
	…And How It Really Behaves.
	Frequency and Memory Latency
	The Multithreading Hypothesis:
	Multithreading to Hide Latency
	Multithreading to Reduce Other Overheads
	The MIPS® MT ASE: Basic Concepts
	MIPS32 ISA and Privileged Resources
	A Multithreaded Processor with 2 TCs
	A Virtual Multiprocessor with 2 VPEs
	A Multithreaded, Virtual Multiprocessor
	The MIPS® MT ASE: New Instructions	
	The MIPS® MT ASE: FORK	
	The MIPS® MT ASE: YIELD	
	The MIPS® MT ASE: MFTR/MTTR	
	The MIPS® MT ASE: EMT/DMT, EVPE/DVPE
	The MIPS® MT ASE: Exceptions
	Linux Kernel Abstraction of an SMP Processor
	SMP Linux Kernel on MIPS MT VPEs (SMVP)
	Linux for Symmetric Multiple Virtual Processors: �Multitasking Throughput with Legacy Binaries
	SMTC on one VPE
	Optimizing MIPS® MT VPE/TC Configuration
	SMTC on Multiple VPEs
	SMTC: The Easy Parts
	SMTC Challenges: Interrupt Management
	SMTC Challenges: Inter-Processor Interrupts
	SMTC Challenges: Shared TLB, ASIDs
	SMTC Challenges: FPU Context Management
	Summary

