
ARM DMA-Mapping
Framework Redesign

and IOMMU integration
Marek Szyprowski, Kyungmin Park

Samsung Poland R&D Center, Samsung Electronics Corp.
m.szyprowski@samsung.com

kyungmin.park@samsung.com

Embedded Linux Conference Europe
Prague, 27 October 2011

mailto:m.szyprowski@samsung.com
mailto:kyungmin.park@samsung.com

Our goal

• To provide support for multimedia hardware
available on latest Samsung SoCs (like ARM
based S5PV210 and Exynos4)

• Multimedia devices: Video codec, camera
interface, hdmi display interface, others

• Common requirement: large, physically
contiguous memory buffers

Contiguous buffers

• Custom framework that reserves memory
during system boot and then dynamically
serves it to the device drivers

• Almost each hardware vendor provides its
own solution: CMEM, PMEM, HWMEM, …

• We developed our own allocator – CMA.

IOMMU hardware

• Solves physical fragmentation issue

• Can map any physical memory pages into
device virtual address space

• Increases security and reliability

• Requires additional driver and integration

Custom solutions – summary

• It was possible to get a working system in a short
period of time

• No chance to get the drivers accepted in mainline
kernel

– A lot of maintenance works with each release

– Hard to discuss any extensions to other kernel
frameworks (like V4L2) if the drivers won’t be merged

• Advice: try to understand, reuse and extend the
existing frameworks

DMA-mapping framework

• Common, kernel-wide, hardware independent
framework for allocating and mapping buffers
into DMA (device IO) address space

• Most popular functions:

– dma_{alloc, mmap, free}_coherent()

– dma_{map,unmap}_{page, single, sg}()

• How does it fit into our requirements?

ARM implementation – issues

• Allocation of physically contiguous memory is
not reliable

– relies on alloc_pages ()

– usually succeeds only on system boot

– dynamic allocation is not really possible

– limited size of a single buffer

– memblock_reserve() + dma_declare_coherent()
workaround means memory waste

Contiguous Memory Allocator (I)

• Provides a functionality of allocating big
chunks of physically contiguous memory

• No limitation or restriction on the size of a
single chunk

• Buffers can by allocated anytime when system
is running providing the enough memory is
available in the system

Contiguous Memory Allocator (II)

• On system boot a specified memory region is
being reserved

• CMA gives back reserved regions to the system
memory pool but only for ‘movable’ memory
pages
– On the allocation request memory migration

framework migrates these pages to other memory
areas freeing physically contiguous chunk

– ‘movable’ pages consist mainly of anonymous
memory and page cache (file system buffers)

CMA and DMA-mapping (I)

• CMA provides dma_alloc_from_contiguous()
call which can replace alloc_pages()

– this was not enough to solve all ARM related
issues...

• Other issues:

– Aliasing between ‘coherent’ and cacheable low-
memory mappings

– GFP_ATOMIC allocations (migration requires
sleeping)

ARM implementation – issues (II)

• Three different implementations merged
together (arch/arm/mm/dma-mapping.c)
– linear non-coherent (most systems)

– linear coherent (noMMU and Intel ixp23xx)

– ‘bounced’ for systems with restricted or
limited/broken DMA engines

• Hard to have different implementations for
different devices in the system

• Hard to add more implementations

DMA-Mapping patches (I)

• Our answer for the limitation of the current
implementation of DMA-mapping

• Goal: to provide per-device implementation of
DMA mapping methods and create generic,
hardware independent IOMMU capable
mapper

DMA-Mapping patches (II)

• Introduce ‘struct dma_map_ops’ style
implementation like on other architectures
– Easy to set methods on per-device basis

– Simplify code (no more #ifdef and if() spaghetti)

• Separated ‘dma bounce’ implementation from
the rest of the code

• Introduce dma_alloc_attrs() as a replacement
for dma_alloc_coherent() and
dma_alloc_writecombine()

DMA-Mapping patches (III)

• Introduce experimental IOMMU capable
implementation

– Use generic, hardware independent IOMMU API

– Finally implemented all dma operations

– Hide the fact that IOMMU is used from the client
devices

• Tested on Samsung Exynos4 hardware with
V4L2 multimedia devices and nVidia Tegra

Contiguous Memory Allocator patches

• Verison 16 has been posted on 6 October 2011:
http://lwn.net/Articles/461849/

• Experimental support for x86 DMA-mapping

• Complete support for ARM DMA-mapping
integration

• Tested on Samsung SoCs, TI OMAP and other
hardware

Summary

• We manage to get a working solution without the
need of any custom frameworks, hiding as much
as possible behind existing API

• The drivers call only a standard Linux kernel API

• The drivers use the same calls on systems with
IOMMU (like Samsung Exynos4) and without (like
Samsung S5PV210).

• Lessons learnt: double check the existing kernel
API before introducing anything new

