
Copyright 2009, Toshiba Corporation.

Evaluation of Flash File Systems

for Large NAND Flash Memory

TOSHIBA CORPORATION

Embedded System Technology Development Dept.

Core Technology Center

Toru Homma

4/6/2009 CELF Embedded Linux Conference

Evaluation of Flash File Systems for Large NAND Flash Memory 2

Agenda

• Background

• Purpose

• File system software block

• Overview of the different Flash file systems

• Testing environment

• Benchmark result

• Summary

• References

Evaluation of Flash File Systems for Large NAND Flash Memory 3

Background

• NAND flash memory is commonly used in embedded systems.

• The falling price of NAND device encourages us to use large
memories (e.g. Larger than 128MB).

• Limitations of bare NAND flash memory devices –

– Block erasure

• finite number of erase-write cycles

(~10K cycles and MLC is less)

– Normal operations

• Bit flip possibilities

Important to use suitable file system

• There are some cases for previous file systems that do not fit large
NAND systems.

• Defining system requirements and then breaking them down to
individual benchmark items.

• Comparing each file system.

Evaluation of Flash File Systems for Large NAND Flash Memory 4

Purpose

1. Fast boot time

2. High I/O performance

3. Low memory
consumption

4. Long NAND device life
expectancy

5. Tolerance for
unexpected power
loss

System requirements for

digital consumer products

a. Mounting time

Flash file system

benchmark items

b. tiobench

c. Module size

d. RAM consumption

e. Actual storage capacity

f. Wear-leveling

g. Recoverability for

unexpected power loss

Evaluation of Flash File Systems for Large NAND Flash Memory 5

Flash file system software block

NAND NOR DataFlash AG-AND OneNAND ECC’d NOR

MTD device, MTD APIMTD device, MTD APIMTD device, MTD APIMTD device, MTD API

VFSVFSVFSVFS

JFFS2JFFS2JFFS2JFFS2 YAFFS2YAFFS2YAFFS2YAFFS2 LogFSLogFSLogFSLogFS UBIFSUBIFSUBIFSUBIFS

UBIUBIUBIUBI

Block

Device

HDD

System Call I/F

Flash memory

VFS: Virtual File System
MTD: Memory Technology Device

ext2 / FAT

Evaluation of Flash File Systems for Large NAND Flash Memory 6

Overview of the different Flash file systems

• JFFS2 : Journaling Flash File System version 2
(David Woodhouse)

– Has been integrated in Linux kernel since 2001.

– Commonly used for low volume flash devices.

– Compression is supported.

• YAFFS2 : Yet Another Flash File System version 2

(Charles Manning)

– YAFFS is the first file system designed specifically for NAND (since 2001).

– Version 2 supports 2KB large page NAND (since 2005).

– Compression is not supported.

• LogFS : Log Flash File System
(Jörn Engel)

– Mounting time is short (since 2005)

– Under development （（（（Needs more testing on large devices））））

– User data is not compressed, while meta data is compressed.
(Jörn said that user data is also compressed in ELC2009, but we could not see it in our
testing. We used the default settings.)

• UBIFS : Unsorted Block Image File System

(Artem Bityutskiy, Adrian Hunter)

– Mainlined in 2.6.27 in Oct 2008.

– Works on top of UBI volumes.

– Compression is supported.

Evaluation of Flash File Systems for Large NAND Flash Memory 7

Testing environment

• Software

– Vanilla kernel + Original patch for embedded systems

– Linux kernel : 2.6.27.9 (JFFS2, YAFFS2, UBIFS), 2.6.25.10 (LogFS)

– NAND driver : ECC is done by software.

• Hardware

– Board : Digital product development board

2.002.5010.61

WriteReadErase

[MB/s]

– NAND performance （（（（MTD character device direct access））））

CPU

RAM (Kernel)

Bus

RegionsRegionsRegionsRegions DataDataDataData Out of bandOut of bandOut of bandOut of band

Total size 256 MB 8 MB

Erasing block 128 KB 4 KB

Page 2 KB 64 B

Sub-page 512 B 16 B

NAND

8 bit

256 MB (32MB)

 MIPS 327 MHz (I$/D$: 64 KB/64 KB)

Evaluation of Flash File Systems for Large NAND Flash Memory 8

(a) Mounting time

• Mounting time is important for boot time.

• Comparing the NAND device readiness

– Time taken from device mount to completion of “ls” command.

• Comparing 4 patterns of NAND device used

– 0% (0MB), 25% (64MB), 50% (128MB), 75% (192MB)

– One file is stored for each case.

• Configurations

– Following settings are used for making the same conditions:

Benchmark result – Fast boot time

JFFS2 YAFFS2 LogFS UBIFS
No compression Default Default No compression

Evaluation of Flash File Systems for Large NAND Flash Memory 9

0

50

100

150

200

J
F
F
S
2

Y
A

F
F
S
2

L
o
gF

S
U

B
IF

S
J
F
F
S
2

Y
A

F
F
S
2

L
o
gF

S
U

B
IF

S
J
F
F
S
2

Y
A

F
F
S
2

L
o
gF

S
U

B
IF

S
J
F
F
S
2

Y
A

F
F
S
2

L
o
gF

S
U

B
IF

S

0% 25% 50% 75%

Capacity of NAND device used

M
o
u
n
ti
n
g

ti
m

e

[s
e
c
]

ls

mount

Benchmark result – Fast boot time (cnt’d)

(a) Mounting time (cnt’d)

� Scan takes time for JFFS2 mounting time.

It takes 180sec for the 75% case.

� YAFFS2, LogFS, and UBIFS are within

0.4 sec.

� YAFFS2 mounting time increases linearly

in terms of the capacity of NAND device

used.

� LogFS stores the tree structure in the

flash device so that mounting time does

not depend on the used capacity.

� UBIFS mounting time is not affected by

the used capacity. UBI initialization time

linearly depends on the number of PEB,

which does not affect on this testing.

Better

0
0.1

0.2
0.3

0.4
0.5

J
F
F
S
2

Y
A

F
F
S
2

L
o
gF

S
U

B
IF

S
J
F
F
S
2

Y
A

F
F
S
2

L
o
gF

S
U

B
IF

S
J
F
F
S
2

Y
A

F
F
S
2

L
o
gF

S
U

B
IF

S
J
F
F
S
2

Y
A

F
F
S
2

L
o
gF

S
U

B
IF

S

0% 25% 50% 75%

Capacity of NAND device used

M
o
u
n
ti
n
g

ti
m

e
 [

se
c
]

ls

mount

Better

Evaluation of Flash File Systems for Large NAND Flash Memory 10

Benchmark result – I/O performance

(b) Tiobench – Read/write throughput w/ 128KB block size

Tiobench parameters : 1 thread, no sync, 192MB for sequential 64MB for random.

UBIFS has the highest throughput because of write-back caching support.

LogFS was unstable – the system froze sometimes.

Read/Write throuput [MB/s]

0

2

4

6

8

10

12

14

16
w

ri
te

ra
nd

om
w

ri
te re
a
d

ra
nd

om
re

ad

w
ri

te

ra
nd

om
w

ri
te re
a
d

ra
nd

om
re

ad

w
ri

te

ra
nd

om
w

ri
te re
a
d

ra
nd

om
re

ad

w
ri

te

ra
nd

om
w

ri
te re
a
d

ra
nd

om
re

ad

JFFS2 YAFFS2 LogFS UBIFS

Better

JFFS2 YAFFS2 LogFS UBIFS

Compression Default Default Compression
configurations

Evaluation of Flash File Systems for Large NAND Flash Memory 11

Benchmark result – I/O performance (cnt’d)

(b) Tiobench – Read/write throughput w/ 256B block size

Setting I/O block size to a half of NAND sub-page.

The throughput is lower in general.

UBIFS is good for sequential read/write due to write-back caching support.

YAFFS2 is good for sequential read/write because of the local buffer.

Rate [MB/s]

0
1
2
3
4
5
6
7
8
9

10
w

ri
te

ra
n
do

m

w
ri
te re
ad

ra
n
do

m

re
ad

w
ri
te

ra
n
do

m

w
ri
te re
ad

ra
n
do

m

re
ad

w
ri
te

ra
n
do

m

w
ri
te re
ad

ra
n
do

m

re
ad

w
ri
te

ra
n
do

m

w
ri
te re
ad

ra
n
do

m

re
ad

JFFS2 YAFFS2 LogFS UBIFS

Better

Read/write throughput [MB/s]

JFFS2 YAFFS2 LogFS UBIFS

Compression Default Default Compression
configurations

Evaluation of Flash File Systems for Large NAND Flash Memory 12

Benchmark result – I/O performance (cnt’d)

(b) Tiobench – Read/write latency w/ 128KB block size

UBIFS has the lowest latency for average case.

UBIFS has high latency for max case because of flushing cached data.

LogFS has the highest latency for max case because of error.

Read/write latency[msec]

0

100

200

300

400

500

600

w
ri
te

ra
n
do

m
w

ri
te re
a
d

ra
n
do

m
re

a
d

w
ri
te

ra
n
do

m
w

ri
te re
a
d

ra
n
do

m
re

a
d

w
ri
te

ra
n
do

m
w

ri
te re
a
d

ra
n
do

m
re

a
d

w
ri
te

ra
n
do

m
w

ri
te re
a
d

ra
n
do

m
re

a
d

JFFS2 YAFFS2 LogFS UBIFS

Ave.
Max.

Better

JFFS2 YAFFS2 LogFS UBIFS

Compression Default Default Compression
configurations

Evaluation of Flash File Systems for Large NAND Flash Memory 13

Benchmark result – I/O performance (cnt’d)

(b) Tiobench – Read/write latency w/ 256B block size

Moving PEB before writing needs more time

in case the writing block is smaller than sub-page.

 [msec]

0

50

100

150

200

250

300

350

400

w
ri
te

ra
n
do

m
w

ri
te re
ad

ra
n
do

m
re

ad
w

ri
te

ra
n
do

m
w

ri
te re
ad

ra
n
do

m
re

ad
w

ri
te

ra
n
do

m
w

ri
te re
ad

ra
n
do

m
re

ad
w

ri
te

ra
n
do

m
w

ri
te re
ad

ra
n
do

m
re

ad

JFFS2 YAFFS2 LogFS UBIFS

Ave.

Max.

Better

Read/write latency [msec]

Evaluation of Flash File Systems for Large NAND Flash Memory 14

0

0.5

1

1.5

2

1 192 383 574 765 956 1147 1338 1529 1720 1911

Block number

W
ri
ti
n
g

la
te

n
c
y

[s
e
c
]

JFFS2

UBIFS

YAFFS2

0

1

2

3

4

5

6

7

8

1 187 373 559 745 931 1117 1303 1489 1675 1861 2047

Block number

W
ri
ti
n
g

la
te

n
c
y

[s
e
c
]

JFFS2

UBIFS

YAFFS2

Benchmark result – I/O performance

(b) Write latency in terms of time and left space

Writing 128KB data up to the capacity limit.

• UBIFS supports write-back, thus the

cached data has to be flushed. This will

cause some latency periodically.

• LogFS could not be measured because of

error.

• YAFFS2and UBIFS have peaks of

write latency when the left space

becomes less.

• One of the reasons is the garbage

collection.

Better

Better

Evaluation of Flash File Systems for Large NAND Flash Memory 15

[KB]

0

50

100

150

200

250

300

JFFS2 YAFFS2 LogFS UBIFS+UBI

Benchmark result – Memory consumption

(c) Module size

UBIFS plus UBI is the largest – 250KB.

LogFS is the smallest – 50KB.

This difference is not a big deal for some systems.

UBI

UBIFS

Module size [KB]

Better

Evaluation of Flash File Systems for Large NAND Flash Memory 16

Benchmark result – Memory consumption

(d) RAM consumption

Measuring the RAM consumption in terms of the following cases:

- 3 patterns of the file size

(0, 1MB, 10MB)

- 3 patterns of the number of files

(0, 1024 of 1KB files (1MB), 10240 of 1KB files (10MB))

Conditions:

JFFS2 YAFFS2 LogFS UBIFS
No compression Default Default No compression

Evaluation of Flash File Systems for Large NAND Flash Memory 17

Benchmark result – Memory consumption

[KB]

0

100

200

300

400

500

600

JFFS2 YAFFS2 LogFS UBIFS

0MB

1MB

10MB

Better

(d) RAM consumption

Measuring the RAM consumption in terms of the following cases:

- 3 patterns of the file size

(0, 1MB, 10MB)

RAM consumption does not depend on the file size.

UBIFS > JFFS2 > YAFFS2 > LogFS

Evaluation of Flash File Systems for Large NAND Flash Memory 18

Benchmark result – Memory consumption

Better

(d) RAM consumption

Measured the RAM consumption in terms of the following cases:
- 3 patterns of the number of files

(0, 1024 of 1KB files (1MB), 10240 of 1KB files (10MB))

RAM consumption increases linearly in terms of the number of files.

Memory usage per one file : UBIFS > YAFFS2 > JFFS2

LogFS could not be measured due to the error.
[KB]

0

2000

4000

6000

8000

10000

12000

JFFS2 YAFFS2 LogFS UBIFS

0個

1024個

10240個

0

1024

10240

Evaluation of Flash File Systems for Large NAND Flash Memory 19

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

NAND data region

UBIFS

LogFS

YAFFS2

JFFS2

User data

Meta data

Benchmark result – Memory consumption

(e) Actual storage capacity

Writing a single file to see how much data could be written.

YAFFS2 can have the largest user data region.

UBIFS needs the most meta data region.

JFFS2 YAFFS2 LogFS UBIFS
No compression Default Default No compression

Better

Evaluation of Flash File Systems for Large NAND Flash Memory 20

Benchmark result – NAND chip life expectancy

(f) Wear-leveling

Testing scenario :

- No compress options for JFFS2 and UBIFS.

- Partition 1 (128MB) is used for the given file system.

- Read-only data is stored in partition 1.

- Test tool to write 50MB data and erase it continuously.

- Counting how many each PEB was erased.

LogFS could not be tested because of error.

Partition 1

128 MB

Partition 2

64 MB

Part.3

32 MB

Part.4

32 MB

NAND (256 MB)

Target File System

Evaluation of Flash File Systems for Large NAND Flash Memory 21

static void jffs2_erase_succeeded(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)

{

D1(printk(KERN_DEBUG "Erase completed successfully at 0x%08x¥n", jeb->offset));

+ #ifdef JFFS2_DEBUG_WL_COUNT

+ {

+ unsigned int eraseblock_number = (unsigned int)(jeb->offset/JFFS2_DEBUG_WL_EB_SIZE);

+ jffs2_wl_log.erase_count[eraseblock_number]++;

+ }

+ #endif

mutex_lock(&c->erase_free_sem);

spin_lock(&c->erase_completion_lock);

list_move_tail(&jeb->list, &c->erase_complete_list);

spin_unlock(&c->erase_completion_lock);

mutex_unlock(&c->erase_free_sem);

/* Ensure that kupdated calls us again to mark them clean */

jffs2_erase_pending_trigger(c);

}

– Changed source code in JFFS2 for wear leveling test

[fs/jffs2/erase.c]

Benchmark result – NAND chip life expectancy

Evaluation of Flash File Systems for Large NAND Flash Memory 22

– Changed source code in YAFFS2 for wear leveling test

[fs/yaffs2/yaffs_mtdif.c]

int nandmtd_EraseBlockInNAND(yaffs_Device * dev, int blockNumber)

{

struct mtd_info *mtd = (struct mtd_info *)(dev->genericDevice);

__u32 addr =

((loff_t) blockNumber) * dev->nDataBytesPerChunk

* dev->nChunksPerBlock;

struct erase_info ei;

int retval = 0;

:

:

/* Todo finish off the ei if required */

sema_init(&dev->sem, 0);

retval = mtd->erase(mtd, &ei);

if (retval == 0)

+ {

+ #ifdef YAFFS2_DEBUG_WL_COUNT

+ yaffs2_wl_log.erase_count[blockNumber]++;

+ #endif

return YAFFS_OK;

+ }

else

return YAFFS_FAIL;

}

Benchmark result – NAND chip life expectancy

Evaluation of Flash File Systems for Large NAND Flash Memory 23

– Changed source code in LogFS for wear leveling test.

[fs/logfs/dev_mtd.c]
static int mtd_erase(struct super_block *sb, loff_t ofs, size_t len)

{

struct mtd_inode *mi = logfs_super(sb)->s_mtd;

struct mtd_info *mtd = mi->mtd;

struct erase_info ei;

DECLARE_COMPLETION_ONSTACK(complete);

int ret;

BUG_ON(len % mtd->erasesize);

if (logfs_super(sb)->s_flags & LOGFS_SB_FLAG_RO)

return -EROFS;

:

:

:

wait_for_completion(&complete);

if (ei.state != MTD_ERASE_DONE)

return -EIO;

+ #ifdef LOGFS_DEBUG_WL_COUNT

+ {

+ u_int32_t eraseblock_number = ((u_int32_t)ofs / mtd->erasesize);

+ logfs_wl_log.erase_count[eraseblock_number]++;

+ }

+ #endif

return 0;

}

Benchmark result – NAND chip life expectancy

Evaluation of Flash File Systems for Large NAND Flash Memory 24

– Changed source code in UBIFS for wear leveling test.

[drivers/mtd/ubi/wl.c]
static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,

int torture)

{

int err;

struct ubi_ec_hdr *ec_hdr;

unsigned long long ec = e->ec;

:

:

ec += err;

if (ec > UBI_MAX_ERASECOUNTER) {

/*

* Erase counter overflow. Upgrade UBI and use 64-bit

* erase counters internally.

*/

ubi_err("erase counter overflow at PEB %d, EC %llu",

e->pnum, ec);

err = -EINVAL;

goto out_free;

}

dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);

+ #ifdef UBI_DEBUG_WL_COUNT

+ ubi_wl_log.erase_count[e->pnum]++;

+ #endif

ec_hdr->ec = cpu_to_be64(ec);

:

:

Benchmark result – NAND chip life expectancy

Evaluation of Flash File Systems for Large NAND Flash Memory 25

YAFFS2

0

20

40

60

80

100

120

140

160

1 163 325 487 649 811 973 1135 1297 1459 1621 1783 1945

Blcok number

E
ra

si
n
g

c
o
un

t

YAFFS2

0

20

40

60

80

100

120

140

160

1 163 325 487 649 811 973 1135 1297 1459 1621 1783 1945

Block number

E
ra

si
n
g

c
o
un

t

Benchmark result – NAND chip life expectancy (cont’d)

• YAFFS2
YAFFS2

0

20

40

60

80

100

120

140

160

1 163 325 487 649 811 973 1135 1297 1459 1621 1783 1945

Block number

E
ra

si
n
g

c
o
un

t

YAFFS2 does not support

global wear leveling.

– Blocks outside the partition

does not participate.

Up to 1GB

Up to 5GB

Up to 3GB

YAFFS2 does not support

static wear leveling.

– Read-only data sits there.

Evaluation of Flash File Systems for Large NAND Flash Memory 26

JFFS2

0

20

40

60

80

100

120

140

160

1 163 325 487 649 811 973 1135 1297 1459 1621 1783 1945

Block number

E
ra

si
n
g

c
o
un

t

• JFFS2

JFFS2

0

20

40

60

80

100

120

140

160

1 163 325 487 649 811 973 1135 1297 1459 1621 1783 1945

Block number

E
ra

si
n
g

c
o
un

t

JFFS2

0

20

40

60

80

100

120

140

160

1 163 325 487 649 811 973 1135 1297 1459 1621 1783 1945

Block number

E
ra

si
n
g

c
o
un

t

Up to 1GB

Up to 3GB

JFFS2 supports static wear

leveling.

- Static data has been moved.

Up to 5GB

JFFS2 does not support global

wear leveling.

– Blocks outside the partition

does not participate.

Benchmark result – NAND chip life expectancy (cont’d)

Evaluation of Flash File Systems for Large NAND Flash Memory 27

UBIFS

0

20

40

60

80

100

120

140

160

1 163 325 487 649 811 973 1135 1297 1459 1621 1783 1945

Block number

E
ra

si
n
g

c
o
un

t

UBIFS

0

20

40

60

80

100

120

140

160

1 164 327 490 653 816 979 1142 1305 1468 1631 1794 1957

Block number

E
ra

si
n
g

c
o
un

t

UBIFS

0

20

40

60

80

100

120

140

160

1 164 327 490 653 816 979 1142 1305 1468 1631 1794 1957

Block number

E
ra

si
n
g

c
o
un

t

• UBIFS

Benchmark result – NAND chip life expectancy (cont’d)

UBIFS supports static wear

leveling. In addition, wear leveling

threshold can be configured.

UBIFS does support global wear

leveling.

- Blocks outside the partition

participates in wear leveling.

- By mapping LEBs onto PEBs.

Up to 1GB

Up to 3GB

Up to 5GB

Evaluation of Flash File Systems for Large NAND Flash Memory 28

YAFFS2

0

20

40

60

80

100

120

140

160

1 164 327 490 653 816 979 1142 1305 1468 1631 1794 1957

Block number

E
ra

si
n
g

c
o
un

t

JFFS2

0

20

40

60

80

100

120

140

160

1 164 327 490 653 816 979 1142 1305 1468 1631 1794 1957

Block number

E
ra

si
n
g

c
o
un

t

UBIFS

0

20

40

60

80

100

120

140

160

1 164 327 490 653 816 979 1142 1305 1468

Block number

E
ra

si
n
g

c
o
un

t

• Wear leveling details – Erasing count per PEB

– UBIFS erasing count is distributed evenly in terms of the blocks.

– JFFS2 varies more than the other file systems.

YAFFS2 JFFS2 UBIFS

Benchmark result – NAND chip life expectancy (cont’d)

Evaluation of Flash File Systems for Large NAND Flash Memory 29

Benchmark result – Tolerance for unexpected power loss

(g) Recoverability for unexpected power loss

Counting mounting failure after unexpected power loss

during the NAND device access.

Configurations:

LogFS failed about 20% of trials.

Needs more testing than 100 times trial.

JFFS2 UBIFS YAFFS2 LogFS

0 0 0 20

Mounting failure after power off during the NAND device access

(100 times trial)

JFFS2 YAFFS2 LogFS UBIFS

Compression Default Default Compression

Evaluation of Flash File Systems for Large NAND Flash Memory 30

System requirement JFFS2 YAFFS2 LogFS UBIFS

1 Boot time Poor Good Excellent Good

2 I/O performance Good Good Fair Excellent

3 Resource usage Fair Excellent Good Fair

4
NAND device life

expectancy
Good Fair N/A Excellent

5

Tolerance for

unexpected power-

off

Good Good Poor Good

6
Integrated in

mainline
Yes No No Yes

Summary – Criteria for large NAND flash integrated systems

• UBIFS and YAFFS2 are good in general.

• UBIFS is in the mainline, which makes the maintenance cost lower.

• LogFS is under development and needs more work.

Evaluation of Flash File Systems for Large NAND Flash Memory 31

Summary – System models to fit each file system

Not dedicated to fast boot.

To make small partitions.

JFFS2

Having applications to write frequently on lifetime sensitive

flash memories (e.g. MLC).

Dedicated to high I/O performance.

To have more room for RAM and flash.

To not write data continuously until the cache overflow.

UBIFS

Dedicated to fast boot.

Not dedicated to high I/O performance.

LogFS

Little room for RAM or flash devices.

To not write data often. To make the static data less. To

make applications to handle static wear leveling.

YAFFS2

• System requirements for each file system

– Appropriate type of system

– Improvements that will adapt your system to a particular file system

MLC: Multi Level Cell

Evaluation of Flash File Systems for Large NAND Flash Memory 32

Summary

• NAND flash device capacity is getting larger in

consumer products.

• Showing which file system is to fit which system.

• Showing how to adapt your system to a particular file

system.

• Improvement possibilities :

– YAFFS2 : to support static wear leveling.

– LogFS : to make it more stable in case of large NAND.

– UBIFS : to arrange the flushing of data to control write latency.

Evaluation of Flash File Systems for Large NAND Flash Memory 33

References
– This presentation is based on

Shinji Namihira (Toshiba), “Examination of Linux Flash Filesystems for

large NAND”, the 71st National Convention of IPSJ, 2009

– MTD, JFFS2, UBIFS, UBI

http://www.linux-mtd.infradead.org/

– YAFFS2

http://www.yaffs.net/

– LogFS

http://www.logfs.com/logfs/

– CE Linux Forum presentations

• Yutaka Araki, “Flash File system, current development status”

http://www.celinuxforum.org/CelfPubWiki/JapanTechnicalJamboree20?action=

AttachFile&do=view&target=celf_flashfs.pdf

• Katsuki Uwatoko, “The comparison of Flash File system performance”

http://www.celinuxforum.org/CelfPubWiki/JapanTechnicalJamboree19?action=

AttachFile&do=get&target=celf_flash2.pdf

• Keijiro Yano, “JFFS2 / YAFFS“

http://www.celinuxforum.org/CelfPubWiki/JapanTechnicalJamboree17?action=

AttachFile&do=view&target=celf_flashfs.pdf

Evaluation of Flash File Systems for Large NAND Flash Memory 34

