=T

UNDERSTANDING ARM HW
DEBUG OPTIONS

Mike Anderson

Chief Scientist

The PTR Group, Inc.
http://ThePTRGroup.com
mike@theptrgroup.com

Copyright 2007-2016, The PTR Group, Inc.

http://theptrgroup.com/

Who is The PTR Group?

#The PTR Group was founded in 2000

#We are involved in multiple areas of work:
» Robotics (NASA space arm)
» Flight software (over 35 satellites on orbit)

» Defensive cyber operations
 I’'ll leave this to your imagination ©

> Embeldded software ports to RTOS/Linux/bare
meta

» loT systems architecture and deployment

OIOT-SD-0416-2 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

Who am I?

+# Over 39 years in the embedded space
#Long-time developer in the RTOS field
¥ Instructor for Linux/Android internals

Mentor for FRC #116 FIRST Robotics Team

+# Frequent speaker at:
» Embedded Linux Conference
» Embedded Systems Conference
» CIA Emerging Technology Conference
» And more...

OIOT-SD-0416-3 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

What We Will Talk About...

Understanding ARM debugging
The JTAG interface
¢ Types of JTAG interfaces
Single Wire Debug/ Single Wire Output
% OpenSDA
¢ CMSIS-DAP
% OpenOCD project
Getting and installing OpenOCD
+# Starting OpenOCD
+# Connecting GDB
% Debugging Code w/ OpenOCD

b

ELC-SD-0416-4 Copyright 2007-2016, The PTR Group, Inc.

Understanding the Debugging Spectrum

+# ARM-based processors continue to expand
their scope and capability

» Ranges from the smallest Cortex-MO uPs to the
new Cortex-A72s for data-center applications

Debugging can range from a simple
printf/printk to various hardware interfaces

» Many ARM devices support multiple variants of
debugging interfaces

ELC-SD-0416-5 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

Debugging on the Core

-

b
s o

b

1~

Small processors may be running a lightweight RTOS or they might run
“bare metal”
» RAM < 512K, flash < TM (typical Cortex-MO+: 32K RAM and 64K of flash)

There are several techniques that are used on these small processors
» Printf-type debug statements
» Blinky LEDs

» Hardware-debugging interfaces
« JTAG
SWD/SWO
OpenSDA
CMSIS-DAP

The first two are essentially free
» But, hardware debuggers can cost from $70 to $10K+ depending on features

ELC-SD-0416-6 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

Mainstream Processor Debug

#For more capable processors, Linux
debugging can be broken up into
different phases

» Kernel debugging

« Early debug of BSP or statically-linked device
drivers

« Debugging of loadable kernel modules

» User-space debugging

ELC-SD-0416-7 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

User-Space Debugging

+# Debugging in user space is generally the
realm of software debuggers like gdb

+# It is possible to touch physical hardware
such as registers for LEDs

> lﬂ]se UlO-based drivers in user space to access
them

Hardware debugging via JTAG is rare in user
space as it requires a run-mode debugger

» Very few examples of this type of interface

ELC-SD-0416-8 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

Early Kernel Debug

Debugging early in the boot cycle is particularly tricky

» You need to get some hardware working before you can do
much of anything

However, the kernel does support the CONFIG_EARLY_PRINTK
option
» Allows you to dump printk output to frame buffer or serial port
» May rely on boot firmware to configure the interface initially

» You can add timing info to the printk output by enabling the
CONFIG_PRINTK_TIMES option to the kernel as well

However, hardware debuggers like JTAG/SWD can make
things much easier to debug if they’re available

ELC-SD-0416-9 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

LKM Debugging

If you can postpone your debug issues until you
can install a loadable kernel module (LKM), then
you have more options available

» KDB is a symbolic disassembler front-end for KGDB

* You can set breakpoints and single step code via keyboard or
serial port

» KGDB can operate via the system’s console port
« Use a secondary system to run the debugger interface

Again, you can use JTAG/SWD if they’re available

ELC-SD-0416-10 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

Oscilloscopes and Logic Analyzers

|If we can toggle a GPIO pin, we
can use an oscilloscope or logic
analyzer on the pin to help in
debugging

» Useful for timing of ISRs

» Count the pulses to determine
where in the code you are dying

Relatively inexpensive PC-based oscilloscopes
and logic analyzers can be fast enough

» But, you’ve got to be able to access the GPIO pin with
the test leads

ELC-SD-0416-11 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

JTAG Port

+#The Joint Test Action Group
(JTAQ) is the name associated
with the IEEE 1149.1 standard
entitled Standard Test Access
Port and Boundary-Scan
Architecture

» Originally introduced in 1990 as a means
to test printed circuit boards

» An alternative to the bed of nails

ELC-SD-0416-12 Copyright 2007-2016, The PTR Group, Inc. \
I

l T r—

JTAG Details

#]JTAG is a simple serial protocol

» Enables the use of “wiggler’-style interfaces

Configuration is done by manipulating the
state machine of the device via the TMS

- 2. TDO
line « 7o
4. TMS e Select)
5. TRST
TMS
—>
TCK L
—— ’
|;— TMS L TMS T™™S
T DEVICE 1 % DEVICE 2 "% DEVICE 3
TDI -

ELC-SD-0416-13

Copyright 2007-2016, The PTR Group, Inc.

JTAG Connections

#The maximum speed of JTAG is 100 MHz

» A ribbon cable is usually sufficient to connect to
the target

+# Connection to the development host is
accomplished via
» Parallel port
» USB
» Serial port
» Ethernet

ELC-SD-0416-14 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

JTAG User Interface

Several JTAG interfaces use a
GDB-style software interface

» Any GDB-aware front end will work

Others have Eclipse plug-ins to
access the JTAG via an IDE

Many still use a command line
interface

A few JTAGs require Windows
» Many will work in Linux
» A few will work in OS/X

ELC-SD-0416-15 Copyright 2007-2016, The PTR Group, Inc.

What can you do with a JTAG?

Typical JTAG usage includes reflashing boot firmware
» Even the really cheap JTAG units can do this

However, it is in the use as a debugging aid that JTAG
comes into its own

» You can set hardware or software breakpoints and debug
in source code

» Sophisticated breakpoint strategies and multi-core
debugging usually require the more expensive units

JTAG units can also be used to exercise the address
bus and peripherals

» This is what JTAG was originally designed for

ELC-SD-0416-16 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

Hardware Configuration Files

Most JTAG units require you to describe the
hardware registers in a configuration file

» This is also how you describe what processor architecture
you are using

Register map information is often supplied by the
JTAG manufacturer or by the SoC vendor

> HighIK integrated SoCs may be just the core and standard
peripherals

Unfortunately, there is no standard format for these
configuration files

» Each JTAG vendor uses different syntax ®

ELC-SD-0416-17 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

Typical JTAG Connectors

¥ The traditional JTAG connector

could have as many as 20 pins aTAG
with .1” spacing

» Tl used a 14-pin variant

» Considered too big for many
applications these days

DDDDDDDDDDD

A smaller 10-pin connector has ol E i
replaced the traditional connector wonl |-]

in most Cortex-M development
boards

» 1.5mm pin spacing
A 20-pin variant of JTAG+ETM also
exists

Source: ARM.com

ELC-SD-0416-18 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

SWD/SWO

S0Cs tend to be highly pin constrained

» The JTAG connector requires too many pins
for many applications

A variant of the JTAG was introduced called
single wire debug (SWD)

» Uses just 2 pins with clock and
bi-directional data pin

« SWDIO and SWCLK are overlaid on
the TMS and TCK pins _

» Up to 4 MBs/sec @ 50MHz
Serial Wire Output (SWO) is Source:striro o
similar to SWD in that it uses just 2 pins

» Provides a serial port-like facility also integrated into the Integrated
Trace Macrocell (ITM)

Pin CN2 Designation
VDD_TARGET VDD from application

SWCLK SWD cleck
GND Ground

DO N| =

ELC-SD-0416-19 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

ETM

b
-~

The Embedded Trace Macrocell (ETM) capability provides a means to trace

instruction execution to see what happened in the past on the processor

»

b
-~

4
4
>
>
>
»

»

b
1~

b
-~

Some JTAG interfaces include a trace buffer that
could be as much as 16MBs of trace buffer

Unfortunately, not all ARM SoCs support ETM capability Source: segger.com

Includes the ability to perform timestamps on instructions for detailed SoC debugging

The ETM interface includes:

an instruction interface

a secure control bus

a data address interface

a pipeline advance interface
a data value interface

a coprocessor interface
other connections to the core

ELC-SD-0416-20 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

OpenSDA
+# OpenSDA is a serial

and debug adapter =

that is built into oo Bl i |]
several development =amma ™ 7SS e 2000
boards

» Bridges between SWD/JTAG and USB interface

» Provides for flash programming via drag and

drop onto an apparent mounted USB drive with a
USB serial interface for printf-style debugging

ELC-SD-0416-21 Copyright 2007-2016, The PTR Group, Inc. \l ~

CMSIS-DAP

ARM’s Cortex Microcontroller
Software Interface Standard ... T
(CMSIS) has an IP block that’s -} :
specifically targeted at
debugging

) The Debug Access Port (DAP)
+# CMSIS-DAP is also typically routed via a USB
interface to the host debugger
» Provides access to the SWD/JTAG interface

ssssssssssssss

eeeeeeeeeee

ELC-SD-0416-22 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

OpenOCD Project

_;

b
-~

b
-~

b
-~

b
-~

e b
i alle o

ELC-SD-0416-23 Copyright 2007-2016, The PTR Group, Inc. \l ~

This project was started in 2008 to create a software interface for the
inexpensive wiggler-style interfaces

» Based on a graduate thesis paper
Original targets were lower-end ARM MCUs
» ARM7TDMI/ARMOTDMI and Cortex-M

Now supports many high-end ARM processors such as Tl DaVinci and
Cortex-A9

Currently hosted as a GIT repository at
http://sourceforge.net/projects/openocd

Provides a GDB interface to several dozen different debugger interfaces
» Includes Wiggler-style JTAG/SWD and CMSIS-DAP

Provides an ARM disassembler feature as well

Supported on Windows, OS/X and Linux
» Pre-packaged versions are often available for development hosts

http://sourceforge.net/projects/openocd

GDB and OpenOCD

GDB can connect to OpenOCD daemon via “target
remote” command to port 3333

» Another option is to use Linux pipes

Supports the use of various GDB front-ends such
as DDD, Eclipse, SlickEdit, Nemiver and others

Use the GDB "mon” command to pass a command
to the OpenOCD daemon

» E.g., mon mdw 0x2100000 to dump memory at
0x2100000

ELC-SD-0416-24 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

DDD GUI Front-End Example

Invoked from command
line with kernel compiled
for debugging
» Use the —debugger
command line option to

load the cross debugger
back end:

ddd -debugger
arm-linux-gdb vmlinux

I =]
File Edit ¥View Program Commands Status Source Data Helpl
e ® e - = - = =

#include
#include
#include
#include
#include
#include
#include

#include
#include

* linuxfarch/arm/kernel/init_task.c

<linux/mm.h

<1i nux/mndm e.h>
<linux/fs.h>
<linux/sched.h>
<linux/init.h>
<linux/init_task.h>
<linux/mqueue. h>

<asmfuaccess.h>
<asm/pgtable.h>

static struct files_struct init_files
static struct signal_struct init_signals
static struct sighand_struct init_sighand =
struct mm_struct init_mm = INIT_MM(init_mm);

EXPORT_SYMBOL (init_rm);

static struct fs_struct init_fs = INIT_FS;

= INIT_FILES:

INIT_SIGNALSCinit_signals):
INIT_SIGHAND{init_sighand);

I
* Initial thread structure.

* We need to make sure that this is 81392-byte aligned due to the
* way process stacks are handled. This is done by making sure

* the linker maps this in the .text segment right after head.s,

* and making head.S ensure the proper alignment.

* The things we do for performance..

w

union thread_union init_thread_union
—attribute__(({__section__(".init.task"J)) =

Interrupt

Step

Then attach to JTAG

GNU DDD 3.3.11 (i386—suse—linux—gnu), by Dorothea Litkehaus and Andreas

Copyright @ 1935-19383 Technische Universitat Braunschweig,

Germany.

Copyright @ 1999-2001 Universitdt Passau, Germany.
Copyright @ 2001 Universitat des Saarlandes, Germany.

Inc.

using “target remote”
command:

Copyright © 2001-2004 Free Software Foundation.
Cgdb) I

Zeller.

& Welcome to DDD 3.3.11 "Rhubarb” (i386-suse-linux-gnu)

||| E—

(gdb) target remote 127.0.0.1:3333

ELC-SD-0416-25

Copyright 2007-2016, The PTR Group, Inc.

Debugging Linux Kernel Code

Compile the kernel with debugging enabled
» Only needed for the debugger - you don’t have to
run the debug kernel

If your problem is early in the boot cycle with
statically linked code, the compiled kernel image
(vmlinux) has all of the symbols you’ll need

If you’re debugging an LKM, then you’ll need to
pull symbol table info from someplace else

ELC-SD-0416-26 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

Example for Linux 4.2.8

B Linux/x86 4.2.8 Kernel Configuration (as superuser) - + X

File Edit Option Help

o @& I E

Option Z | option -
DOS/FATINT Filesystems w—Magic SysRq key
Pseudo filesystems {0x1) Enable magic SysRq key functions by default
Miscellaneous filesystems Kernel debugging
Network File Systems O Debug shared IRQ handlers
Mative language support OPanic on Oops
[Distributed Lock Manager (DLM) {0) panic timeout

H Collect scheduler debugging info -~
printk and dmesg options u P— P_— b
Compile-time checks and compiler options _< {] < >
Memory Debugging Kernel debugging (DEBUG_KERMNEL) =
Debug Lockups and Hangs .
Lock Debugging (spinlocks, mutexes, etc...) CONFIG_DEBUG_KERNEL:
RCU Debugging Say ¥ here if you are developing drivers or trying to debug and
FTracers identify kernel problems.
Runtime Testing
CIsample kernel code symbol: DEBUG_KERNEL [=y]

Type : boolean
[KGDB: kernel debugger Prompt: Kernel debugging
Security options Location:
v—Cryptographic API -> Kernel hacking
. Defined at lib/Kconfig.debug:375
(INIST SPE00-S0A DRBC_E D Selected by: EXPERT [=y]
Hardware crypto devices o
Asymmetric (publickey cryptoaraphic) key type e -~
s

<L J 1< >

ELC-SD-0416-27 Copyright 2007-2016, The PTR Group, Inc. \
I

Loading Symbols into the JTAG Ul

Depending on the JTAG Ul, you may simply have to load the
kernel’s vmlinux image to be able to access the symbols by
name

» The techniques for doing this vary by JTAG vendor
+# Attach the JTAG to the hardware
» Reset the board via JTAG and hold in reset
» Set H/W breakpoint using the JTAG
» Load the vmlinux via the JTAG (this loads the symbols)
» Command the JTAG to tell the hardware to “go”

Once you encounter the hardware breakpoint, you can step
in assembly until the MMU is enabled

» The MMU will translate physical addresses to virtual addresses
» Once virtual addressing is on, set breakpoints as normal

ELC-SD-0416-28 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

Using JTAG to Dump printk Buffer

#|f you kernel hangs right after displayin
“U¥1compressing %erngel Image ... BK’Y 7
message...

» You probably have printk () output, but the serial
console isn’t initialized yet

#We can dump the printk buffer using the
JTAG!

» Look in the kernel’s System.map file for
something like “__log_buf”

$ grep _ log buf /boot/System.map
c0445980 b log buf

ELC-SD-0416-29 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

Dumping printk Buffer #2

+# The address of the buffer is a translated kernel
address

» Strip off the OxCO000000 portion of the address to get
(typically) the physical address on processors like the X86

» i.e., 0xc0445980 would typically be at physical address
0x445980

» You must understand your processor to do the
translations correctly

+# Now, use the JTAG to dump that address

» Raw printk output, but you can get an idea of what it was
doing when it crashed

» Data is still there even after reset (but not power-off)

ELC-SD-0416-30 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

Debugging Loadable Modules

In order to debug a loaded module, we need to
tell the debugger where the module is in
memory

» The module’s information is not in the vmlinux
image because that shows only statically-linked
drivers

How we proceed depends on where we need to
debug

» If we need to debug the __init code, we need to set a
breakpoint in the 10ad module () function

ELC-SD-0416-31 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

Debugging Loadable Modules #2

We’ll need to breakpoint just before the control
is transferred to the module init()

» Somewhere around line 3233 of module.c (4.2.8
kernel):

/* Start the module */
if (mod->init !'= NULL)
ret = do_one initcall (mod->init) ;

ELC-SD-0416-32 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

Debugging Loadable Modules #3

Once the breakpoint is encountered, we can
walk the module address list to find the
assigned address for the module

» We then use the add-symbol-file GDB command to
add the debug symbols for the driver at the address
for the loaded module

» E.g.,
add-symbol-file ./mydriver.ko 0Ox<addr> -e .init.text

ELC-SD-0416-33 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

Debugging Loadable Modules #4

#Now, you can set breakpoints via the GDB
commands to the JTAG and tell the
system to continue until a breakpoint in
encountered

» Typically, you’ll set breakpoints at ocops (),

panic() and sys sync() as a good starting
point

ELC-SD-0416-34 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

What if the init is Working?

#If you do not need to debug the init
code, then load the driver and look in the
/sys/modules/<modu|ename>/sectlons/.text
for the address of the text segment

#Next, use the add-symbol-file command
again, but use the .text address and omit
the “-e .init.text’

» Set your breakpoints and continue

ELC-SD-0416-35 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

Summary

JTAG/SWD adds significant capability when debugging
microcontrollers

» However, they require access to the JTAG pins on the processor

JTAG/SWD can use open protocols like GDB with open
interface software like OpenOCD

¥ You pretty much get what you pay for in most JTAG/SWD
interfaces

» A $75 JTAG just doesn’t have the features of a $3K version

Despite its low cost, OpenOCD and simple
wiggler-style JTAG/SWD interfaces make a
powerful combination

» Unfortunately, there is no multi-core support in OpenOCD yet

ELC-SD-0416-36 Copyright 2007-2016, The PTR Group, Inc. \l =T r—~

