
Copyright 2007-2016, The PTR Group, Inc.

UNDERSTANDING ARM HW
DEBUG OPTIONS

Mike Anderson
Chief Scientist

The PTR Group, Inc.

http://ThePTRGroup.com

mike@theptrgroup.com

http://theptrgroup.com/

Copyright 2007-2016, The PTR Group, Inc.

Who is The PTR Group?
The PTR Group was founded in 2000
We are involved in multiple areas of work:
Robotics (NASA space arm)
Flight software (over 35 satellites on orbit)
Defensive cyber operations

• I’ll leave this to your imagination

Embedded software ports to RTOS/Linux/bare
metal

IoT systems architecture and deployment

OIOT-SD-0416-2

Copyright 2007-2016, The PTR Group, Inc.

Who am I?
Over 39 years in the embedded space
Long-time developer in the RTOS field
Instructor for Linux/Android internals
Mentor for FRC #116 FIRST Robotics Team
Frequent speaker at:
Embedded Linux Conference
Embedded Systems Conference
CIA Emerging Technology Conference
And more…

OIOT-SD-0416-3

Copyright 2007-2016, The PTR Group, Inc.

What We Will Talk About…
Understanding ARM debugging
The JTAG interface
Types of JTAG interfaces
Single Wire Debug/ Single Wire Output
OpenSDA
CMSIS-DAP
OpenOCD project
Getting and installing OpenOCD
Starting OpenOCD
Connecting GDB
Debugging Code w/ OpenOCD

ELC-SD-0416-4

Copyright 2007-2016, The PTR Group, Inc.

Understanding the Debugging Spectrum

ARM-based processors continue to expand
their scope and capability

Ranges from the smallest Cortex-M0 mPs to the
new Cortex-A72s for data-center applications

Debugging can range from a simple
printf/printk to various hardware interfaces

Many ARM devices support multiple variants of
debugging interfaces

ELC-SD-0416-5

Copyright 2007-2016, The PTR Group, Inc.

Debugging on the Core
Small processors may be running a lightweight RTOS or they might run
“bare metal”
 RAM < 512K, flash < 1M (typical Cortex-M0+: 32K RAM and 64K of flash)

There are several techniques that are used on these small processors
 Printf-type debug statements
 Blinky LEDs
 Hardware-debugging interfaces

• JTAG
• SWD/SWO
• OpenSDA
• CMSIS-DAP

The first two are essentially free
 But, hardware debuggers can cost from $70 to $10K+ depending on features

ELC-SD-0416-6

Copyright 2007-2016, The PTR Group, Inc.

Mainstream Processor Debug
For more capable processors, Linux
debugging can be broken up into
different phases

Kernel debugging

• Early debug of BSP or statically-linked device
drivers

• Debugging of loadable kernel modules

User-space debugging

ELC-SD-0416-7

Copyright 2007-2016, The PTR Group, Inc.

User-Space Debugging
Debugging in user space is generally the
realm of software debuggers like gdb
It is possible to touch physical hardware
such as registers for LEDs
Use UIO-based drivers in user space to access

them

Hardware debugging via JTAG is rare in user
space as it requires a run-mode debugger
Very few examples of this type of interface

ELC-SD-0416-8

Copyright 2007-2016, The PTR Group, Inc.

Early Kernel Debug
Debugging early in the boot cycle is particularly tricky
You need to get some hardware working before you can do

much of anything

However, the kernel does support the CONFIG_EARLY_PRINTK
option
Allows you to dump printk output to frame buffer or serial port
May rely on boot firmware to configure the interface initially
You can add timing info to the printk output by enabling the

CONFIG_PRINTK_TIMES option to the kernel as well

However, hardware debuggers like JTAG/SWD can make
things much easier to debug if they’re available

ELC-SD-0416-9

Copyright 2007-2016, The PTR Group, Inc.

LKM Debugging
If you can postpone your debug issues until you
can install a loadable kernel module (LKM), then
you have more options available
KDB is a symbolic disassembler front-end for KGDB

• You can set breakpoints and single step code via keyboard or
serial port

KGDB can operate via the system’s console port
• Use a secondary system to run the debugger interface

Again, you can use JTAG/SWD if they’re available

ELC-SD-0416-10

Copyright 2007-2016, The PTR Group, Inc.

Oscilloscopes and Logic Analyzers
If we can toggle a GPIO pin, we
can use an oscilloscope or logic
analyzer on the pin to help in
debugging
Useful for timing of ISRs
Count the pulses to determine

where in the code you are dying

Relatively inexpensive PC-based oscilloscopes
and logic analyzers can be fast enough
But, you’ve got to be able to access the GPIO pin with

the test leads

ELC-SD-0416-11

Source: salae.com

Copyright 2007-2016, The PTR Group, Inc.

JTAG Port
The Joint Test Action Group
(JTAG) is the name associated
with the IEEE 1149.1 standard
entitled Standard Test Access
Port and Boundary-Scan
Architecture
Originally introduced in 1990 as a means

to test printed circuit boards

An alternative to the bed of nails

Source: Test Electronics

ELC-SD-0416-12

Copyright 2007-2016, The PTR Group, Inc.

JTAG Details
JTAG is a simple serial protocol

Enables the use of “wiggler”-style interfaces

Configuration is done by manipulating the
state machine of the device via the TMS
line

ELC-SD-0416-13

Copyright 2007-2016, The PTR Group, Inc.

JTAG Connections
The maximum speed of JTAG is 100 MHz
A ribbon cable is usually sufficient to connect to

the target

Connection to the development host is
accomplished via
Parallel port
USB
Serial port
Ethernet

Source: Abatron

Source: Segger

Source: Macraigor

ELC-SD-0416-14

Copyright 2007-2016, The PTR Group, Inc.

JTAG User Interface
Several JTAG interfaces use a
GDB-style software interface
Any GDB-aware front end will work

Others have Eclipse plug-ins to
access the JTAG via an IDE
Many still use a command line
interface
A few JTAGs require Windows
Many will work in Linux
A few will work in OS/X

Source: ibm.com

ELC-SD-0416-15

Copyright 2007-2016, The PTR Group, Inc.

What can you do with a JTAG?
Typical JTAG usage includes reflashing boot firmware
Even the really cheap JTAG units can do this

However, it is in the use as a debugging aid that JTAG
comes into its own
You can set hardware or software breakpoints and debug

in source code
Sophisticated breakpoint strategies and multi-core

debugging usually require the more expensive units

JTAG units can also be used to exercise the address
bus and peripherals
This is what JTAG was originally designed for

ELC-SD-0416-16

Copyright 2007-2016, The PTR Group, Inc.

Hardware Configuration Files
Most JTAG units require you to describe the
hardware registers in a configuration file
This is also how you describe what processor architecture

you are using

Register map information is often supplied by the
JTAG manufacturer or by the SoC vendor
Highly integrated SoCs may be just the core and standard

peripherals

Unfortunately, there is no standard format for these
configuration files
Each JTAG vendor uses different syntax

ELC-SD-0416-17

Copyright 2007-2016, The PTR Group, Inc.

Typical JTAG Connectors
The traditional JTAG connector
could have as many as 20 pins
with .1” spacing
TI used a 14-pin variant
Considered too big for many

applications these days

A smaller 10-pin connector has
replaced the traditional connector
in most Cortex-M development
boards
1.5mm pin spacing

A 20-pin variant of JTAG+ETM also
exists

Source: ARM.com

ELC-SD-0416-18

Copyright 2007-2016, The PTR Group, Inc.

SWD/SWO
SoCs tend to be highly pin constrained
 The JTAG connector requires too many pins

for many applications

A variant of the JTAG was introduced called
single wire debug (SWD)
 Uses just 2 pins with clock and

bi-directional data pin
• SWDIO and SWCLK are overlaid on

the TMS and TCK pins

 Up to 4 MBs/sec @ 50MHz

Serial Wire Output (SWO) is
similar to SWD in that it uses just 2 pins
 Provides a serial port-like facility also integrated into the Integrated

Trace Macrocell (ITM)

Source: st-micro.com

ELC-SD-0416-19

Copyright 2007-2016, The PTR Group, Inc.

ETM
The Embedded Trace Macrocell (ETM) capability provides a means to trace
instruction execution to see what happened in the past on the processor
 Includes the ability to perform timestamps on instructions for detailed SoC debugging

The ETM interface includes:
 an instruction interface
 a secure control bus
 a data address interface
 a pipeline advance interface
 a data value interface
 a coprocessor interface
 other connections to the core

Some JTAG interfaces include a trace buffer that
could be as much as 16MBs of trace buffer
Unfortunately, not all ARM SoCs support ETM capability Source: segger.com

ELC-SD-0416-20

Copyright 2007-2016, The PTR Group, Inc.

OpenSDA
OpenSDA is a serial
and debug adapter
that is built into
several development
boards
Bridges between SWD/JTAG and USB interface

Provides for flash programming via drag and
drop onto an apparent mounted USB drive with a
USB serial interface for printf-style debugging

Source: nxp.com

ELC-SD-0416-21

Copyright 2007-2016, The PTR Group, Inc.

CMSIS-DAP
ARM’s Cortex Microcontroller
Software Interface Standard
(CMSIS) has an IP block that’s
specifically targeted at
debugging
The Debug Access Port (DAP)

CMSIS-DAP is also typically routed via a USB
interface to the host debugger
Provides access to the SWD/JTAG interface

Source: keil.com

ELC-SD-0416-22

Copyright 2007-2016, The PTR Group, Inc.

OpenOCD Project
This project was started in 2008 to create a software interface for the
inexpensive wiggler-style interfaces
 Based on a graduate thesis paper

Original targets were lower-end ARM MCUs
 ARM7TDMI/ARM9TDMI and Cortex-M

Now supports many high-end ARM processors such as TI DaVinci and
Cortex-A9
Currently hosted as a GIT repository at
http://sourceforge.net/projects/openocd
Provides a GDB interface to several dozen different debugger interfaces
 Includes Wiggler-style JTAG/SWD and CMSIS-DAP

Provides an ARM disassembler feature as well
Supported on Windows, OS/X and Linux
 Pre-packaged versions are often available for development hosts

ELC-SD-0416-23

http://sourceforge.net/projects/openocd

Copyright 2007-2016, The PTR Group, Inc.

GDB and OpenOCD
GDB can connect to OpenOCD daemon via “target
remote” command to port 3333
Another option is to use Linux pipes

Supports the use of various GDB front-ends such
as DDD, Eclipse, SlickEdit, Nemiver and others

Use the GDB “mon” command to pass a command
to the OpenOCD daemon
E.g., mon mdw 0x2100000 to dump memory at

0x2100000

ELC-SD-0416-24

Copyright 2007-2016, The PTR Group, Inc.

DDD GUI Front-End Example
Invoked from command
line with kernel compiled
for debugging
Use the –debugger

command line option to
load the cross debugger
back end:

ddd –debugger
arm-linux-gdb vmlinux

Then attach to JTAG
using “target remote”
command:
(gdb) target remote 127.0.0.1:3333

ELC-SD-0416-25

Copyright 2007-2016, The PTR Group, Inc.

Debugging Linux Kernel Code
Compile the kernel with debugging enabled
Only needed for the debugger – you don’t have to

run the debug kernel

If your problem is early in the boot cycle with
statically linked code, the compiled kernel image
(vmlinux) has all of the symbols you’ll need

If you’re debugging an LKM, then you’ll need to
pull symbol table info from someplace else

ELC-SD-0416-26

Copyright 2007-2016, The PTR Group, Inc.

Example for Linux 4.2.8

ELC-SD-0416-27

Copyright 2007-2016, The PTR Group, Inc.

Loading Symbols into the JTAG UI
Depending on the JTAG UI, you may simply have to load the
kernel’s vmlinux image to be able to access the symbols by
name
 The techniques for doing this vary by JTAG vendor

Attach the JTAG to the hardware
 Reset the board via JTAG and hold in reset
 Set H/W breakpoint using the JTAG
 Load the vmlinux via the JTAG (this loads the symbols)
Command the JTAG to tell the hardware to “go”

Once you encounter the hardware breakpoint, you can step
in assembly until the MMU is enabled
 The MMU will translate physical addresses to virtual addresses
Once virtual addressing is on, set breakpoints as normal

ELC-SD-0416-28

Copyright 2007-2016, The PTR Group, Inc.

Using JTAG to Dump printk Buffer
If you kernel hangs right after displaying
“Uncompressing Kernel Image … OK”
message…
You probably have printk() output, but the serial

console isn’t initialized yet
We can dump the printk buffer using the
JTAG!
Look in the kernel’s System.map file for

something like “__log_buf”
$ grep __log_buf /boot/System.map

 c0445980 b __log_buf

ELC-SD-0416-29

Copyright 2007-2016, The PTR Group, Inc.

Dumping printk Buffer #2
The address of the buffer is a translated kernel
address
Strip off the 0xC0000000 portion of the address to get

(typically) the physical address on processors like the X86
i.e., 0xc0445980 would typically be at physical address

0x445980
You must understand your processor to do the

translations correctly

Now, use the JTAG to dump that address
Raw printk output, but you can get an idea of what it was

doing when it crashed
Data is still there even after reset (but not power-off)

ELC-SD-0416-30

Copyright 2007-2016, The PTR Group, Inc.

Debugging Loadable Modules
In order to debug a loaded module, we need to
tell the debugger where the module is in
memory
The module’s information is not in the vmlinux

image because that shows only statically-linked
drivers

How we proceed depends on where we need to
debug
If we need to debug the __init code, we need to set a

breakpoint in the load_module() function

ELC-SD-0416-31

Copyright 2007-2016, The PTR Group, Inc.

Debugging Loadable Modules #2
We’ll need to breakpoint just before the control
is transferred to the module_init()
Somewhere around line 3233 of module.c (4.2.8

kernel):

 /* Start the module */

 if (mod->init != NULL)

 ret = do_one_initcall(mod->init);

ELC-SD-0416-32

Copyright 2007-2016, The PTR Group, Inc.

Debugging Loadable Modules #3
Once the breakpoint is encountered, we can
walk the module address list to find the
assigned address for the module
We then use the add-symbol-file GDB command to

add the debug symbols for the driver at the address
for the loaded module

E.g.,
add-symbol-file ./mydriver.ko 0x<addr> -e .init.text

ELC-SD-0416-33

Copyright 2007-2016, The PTR Group, Inc.

Debugging Loadable Modules #4
Now, you can set breakpoints via the GDB
commands to the JTAG and tell the
system to continue until a breakpoint in
encountered

Typically, you’ll set breakpoints at oops(),
panic() and sys_sync() as a good starting
point

ELC-SD-0416-34

Copyright 2007-2016, The PTR Group, Inc.

What if the __init is Working?
If you do not need to debug the __init
code, then load the driver and look in the
/sys/modules/<modulename>/sections/.text
for the address of the text segment

Next, use the add-symbol-file command
again, but use the .text address and omit
the “–e .init.text”
Set your breakpoints and continue

 ELC-SD-0416-35

Copyright 2007-2016, The PTR Group, Inc.

Summary
JTAG/SWD adds significant capability when debugging
microcontrollers
However, they require access to the JTAG pins on the processor

JTAG/SWD can use open protocols like GDB with open
interface software like OpenOCD
You pretty much get what you pay for in most JTAG/SWD
interfaces
A $75 JTAG just doesn’t have the features of a $3K version

Despite its low cost, OpenOCD and simple
wiggler-style JTAG/SWD interfaces make a
powerful combination
Unfortunately, there is no multi-core support in OpenOCD yet

ELC-SD-0416-36

