
LinuxBoot: Linux as Firmware
Chris Koch, Gan Shun Lim Google

with Ron Minnich, Ryan O’Leary, Xuan Chen Google
with Trammell Hudson Two Sigma
with Jean-Marie Verdun, Guillaume Giamarchi Horizon Computing
with David Hendricks, Andrea Barberio Facebook
with Philipp Deppenwiese 9elements
with Andrey Mirtchovski Cisco

www.linuxboot.org



State of Intel x86 platforms today

Ring 0 (Linux)

Ring 3 (User)

SMM ½ kernel. Traps to 
8086 16-bit mode.

Management Engine, ISH, IE. 
Higher privilege than Ring -2. 
Can turn on node and reimage 
disks invisibly. Minix 3.

Ring -1 (Xen etc.)

X86 CPU you know about X86 CPU(s) you don’t know about

Code you 
know 
about

Code 
you 
don’t 
know 
about

Ring -2 kernel and ½ kernel 
Control all CPU resources. 
Invisible to Ring -1, 0, 3

UEFI kernel running in 
64-bit paged mode.

Ring -3 kernels

This is our focus today



What’s in x86 firmware?

● Mostly closed source UEFI

● Completely proprietary and potentially exploit friendly

● Controlled by vendor; hard to update without vendor support

● Varies from board to board, even on two ostentatiously identical machines



UEFI Boot

OCP Winterfell node has 

over 120 files in the DXE 

Firmware Volume



What’s in the DXE firmware volume? (and 
more)

CsmVideo
Terminal
SBAHCI
AHCI
AhciSmm
BIOSBLKIO
IdeSecurity
IDESMM
CSMCORE
HeciSMM
AINT13
HECIDXE
AMITSE
DpcDxe

ArpDxe
SnpDxe
MnpDxe
UefiPxeBcDxe
NetworkStackSetupScreen
TcpDxe
Dhcp4Dxe
Ip4ConfigDxe
Ip4Dxe
Mtftp4Dxe
Udp4Dxe
Dhcp6Dxe
Ip6Dxe
Mtftp6Dxe

Udp6Dxe
IpSecDxe
UNDI
IsaBusDxe
IsaIoDxe
IsaSerialDxe
DiskIoDxe
ScsiBus
Scsidisk
GraphicsConsoleDxe
CgaClassDxe
SetupBrowser
EhciDxe
UhciDxe

UsbMassStorageDxe
UsbKbDxe
UsbMouseDxe
UsbBusDxe
XhciDxe
USB/XHCI/etc
Legacy8259
DigitalTermometerSensor (sic)



LinuxBoot/NERF

“Boot 
Manager” ->
Linux kernel

Go-based 
userland
(u-root.tk)

We keep the DXE core 
around for ACPI and some 
device initialization. We 
remove most DXEs. We 
kexec next kernel. 

Most DXEs are 
removed



LinuxBoot DXE FV comparison

● Only 31 files

● Most of them are SMM/SMI related DXEs and ACPI

● SMM can potentially be removed one day or at least controlled by the kernel



What’s the point?

● Control and update your firmware

● Reduce number of distinct drivers on the system

● Use Linux Kernel Engineers instead of having another UEFI team

● Remove unneeded legacy support

● Some apps/DXEs can be written as a user program in Linux



Forms of LinuxBoot



Common Questions

● Are we simply replacing GRUB?
○ No, we replace what is used to run GRUB

● Why have linux boot another linux?
○ Firmware flash size is small, you probably want a more capable runtime kernel

● Why have Go? What’s wrong with PXE?



Linux + what’s in the initramfs?

● Whatever you want.
○ We provide mechanisms, not policy.

● Stages of firmware we are replacing...

○ Drivers

○ Bootloaders

○ Debugging shells

○ …

● Busybox? 

● systemd-boot?



u-root: userspace in Go

● We have the full toolset of Linux applications at our fingertips in firmware now.

○ Let’s use them!

○ Let’s use a memory-safe language.

○ Let’s use a language that makes concurrency easy.

● u-root: 3M (compressed) initramfs in Go
○ busybox-like tools (dd, ls, cpio, …)

○ kexec-based bootloaders (PXE- and GRUB-compatible boot tools, ...)

● LinuxBoot + u-root: NERF
● There are other runtimes: e.g. Heads.



u-root: 30 Go commands in 3M? How?!

● Source Mode: 6M compressed.

○ Go toolchain (compiler, linker, assembler, etc).

○ All commands in source.

○ Compiled and cached in tmpfs on the fly.

■ ~200ms to compile basic command.

○ Architecture-independent.

● BB Mode: 3M compressed.

○ Take all source, rewrite using AST to compile all into one binary.

○ Busybox-style: argv[0] decides what to execute.

○ Initramfs contains one binary.



Implications

● Standard Linux shell

○ Your firmware runs a shell you are used to!

○ No custom UEFI shells with strange commands.

○ Just use the tools you already know

● sshd: ssh into your firmware to debug!

○ No more bricked machines: just ssh in when it fails to boot past firmware.

● (u-root only) init: custom-built init in Go is faster.

○ No need for systemd, upstart, scripts.

○ Go code easier to understand than a sea of scripts



Implications (2)

● (u-root only) Source mode: debugging commands on the fly

○ Rewrite the source, remove the cached version, run to recompile.

○ Versatility of scripts with features and type system of Go.

● PXE boot
○ No more 16-bit code.

○ Trivial to use modern features.

■ HTTP(S), IPv6, … 

■ Just use a kernel & language with well-tested, audited support for them!

○ Trivial to parallelize.

■ Stop waiting for NICs to time out trying PXE boot in serial…

■ Just spawn a thread to try on each NIC.



Implications (3)

● Develop firmware applications using modern toolsets

○ Use Go static analysis tools

○ Race detector, memory sanitizer, etc...

○ Continuous Integration testing

○ Open documentation

● (Bootloader) Apps run in Ring 3 - UEFI runs them in ring 0

○ Application crashes - kernel is still up

○ ssh in and debug!



Implications (4)

● Want to write your own bootloader?

○ Hire a firmware engineer…

○ Wait, no. Just hire a normal Linux application engineer.

○ Leverage Linux knowledge already out there.

● You’re starting to get the gist...



Links

● LinuxBoot website: www.linuxboot.org

● LinuxBoot GitHub: github.com/linuxboot/linuxboot

● u-root GitHub: github.com/u-root/u-root 

● Heads: www.osresearch.net 

http://www.linuxboot.org
http://github.com/linuxboot/linuxboot
http://github.com/u-root/u-root
http://www.osresearch.net

