Status of Embedded Linux
March 2018

Tim Bird
Architecture Group Chair
LF Core Embedded Linux Project
Nature of this talk…

- Quick overview of lots of embedded topics
- A springboard for further research
 - If you see something interesting, you have a link or something to search for
Outline

Kernel Versions
Technology Areas
CE Workgroup Projects
Other Stuff
Resources
Outline

Kernel Versions
Technology Areas
CE Workgroup Projects
Other Stuff
Resources
Kernel Versions

- Linux v4.11 – 30 Apr 2017 – 70 days
- Linux v4.12 – 2 Jul 2017 – 63 days
- Linux v4.13 – 3 Sep 2017 – 63 days
- Linux v4.14 – 12 Nov 2017 – 70 days
- Linux v4.15 – 28 Jan 2018 -- 77 days
 - I predicted: 21 Jan 2018 (70 days)
 - What happened? – Spectre/Meltdown
- We’re on 4.16-rc3 now
 - Expect 4.16 on March 25 (but I’d prefer April 1!)
Linux 4.11

- New kernel refcount API
- TinyDRM subsystem added
- New statx() system call
 - https://lwn.net/Articles/707602/
 - 2038-safe time values
 - Mask of fields to obtain (for efficiency)
- Sched.h refactoring
 - Non-mainline code: watch out!
Linux 4.12

- BFQ and Kyber block I/O schedulers
- Mini-tty prep work
 - Not full mini-tty implementation yet
- Proper support for USB type-C connectors
- AnalyzeBoot tool
 - Reads dmesg (and possibly ftrace log) and produces html graph of boot events
 - Part of Intel pm-graph tools project
 - https://github.com/01org/pm-graph
 - See tools/power/pm-graph/analyze_boot.py
Linux 4.13

- TLS implementation in the kernel
 - Should help with HTTPS performance
 - See https://lwn.net/Articles/666509/
- Next-interrupt prediction
- F2FS support for disk quotas
- Kselftest transitioning to TAP13 protocol
Linux 4.14

- New kernel stack unwinder (ORC) for x86_64
 - Better unwinding via kernel-specific out-of-band structure (for every kernel PC address)
 - See https://lwn.net/Articles/728339/
- zstd compression for btrfs and squashfs
- Better cpufreq coordination with SMP
Linux 4.15

- Cramfs supports mapping persistent memory
 - Can use for XIP
- AMD display core system accepted
- Device tree compiler has support for overlays
- RISC-V support
- Spectre/Meltdown mitigations
 - KPTI
 - retpolines
Linux 4.16 – some stuff

- Initial support for the Jailhouse hypervisor
- eBPF support for functions
- arm64 mitigations for Spectre and Meltdown
- High resolution times now have two modes, to allow them to be run in software interrupt context
- More Spectre mitigations
 - array_index_nospec()
Outline

Kernel Versions
Technology Areas
CE Workgroup Projects
Other Stuff
Resources
Bootup Time

- Analyze_boot tool – new in in 4.12
- Some good previous talks:
 - ELCE 2017 - *A Pragmatic Guide to Boot-Time Optimization* by Chris Simmonds
 - ELCE 2014 - *12 Lessons Learnt in Boot Time Reduction* by Andrew Murray
 - ELC 2015 - *Fastboot Tools and Techniques* by John Mehaffey
- Android boot time ideas
 - ELC 2017 – *Improving the bootup speed of AOSP* – Bernhard Rosenkranzer
Device Tree

- Device Tree validation
 - Schema for binding language, validator for bindings and for device tree data
 - New proposal for device tree validation by Pantellis and Grant Likely
- Updated Device Tree specification
 - Want to update material and make it more available
- Overlays
 - Device tree compiler has support for overlays
File Systems

- zstd compression for btrfs and squashfs (4.14)
 - Faster and smaller compression/decompression
 - How to use it (BTRFS):
 - https://btrfs.wiki.kernel.org/index.php/Compression
- See
- F2FS support for disk quotes (4.13, 4.15)
 - Apparently used by Android
- UBIFS support for encryption (4.10)
Graphics

- TinyDRM
 - Provides graphic support for small simple displays (eg displays over i2C or SPI)
 - Hope to replace framebuffer drivers over time
 - See https://www.phoronix.com/scan.php?page=news_item&px=TinyDRM-Patches-Posted

- Presentation
 - ELC 2017 *What Can Vulkan do for You?* - by Jason Ekstrand
 - Working on support for virtual reality
 - Keith Packard’s talk at LCA 2018
GPU drivers

- Nvidia, Vivante and Broadcom GPUs have open drivers
 - Nouveau, Etnaviv, and VideoCore 4
- Qualcomm Adreno
 - Freedreno continues to be developed (June 2017)
 - See https://www.xda-developers.com/open-source-adreno-project-freedreno-receives-new-update/
- Imagination PowerVR – no public driver, although one was teased in 2015
 - Apple dropping Imagination (April 2017)
- ARM Mali – Some work (Lima project) on earlier chip versions
 - Status update: https://lwn.net/Articles/716600/
 - Some recent work:
 - https://github.com/yuq/linux-lima
 - https://notabug.org/cafe/chai
Networking

- Time Sensitive Networking
 - `so_txtime` option for high-resolution transmit time
 - IEEE deterministic networking (DetNet) working group
 - Lots of standards
- Bluetooth 5 – supported
Power Management

- Power-efficient workqueues
 - More efficient work scheduling
 - Results in about 15% better energy consumption
 - See https://lwn.net/Articles/731052/

- Better cpufreq coordination with SMP
 - Allows non-local CPU to adjust frequency
 - Good for when a non-local CPU schedules work on a CPU, and the work needs a frequency boost
 - See https://lwn.net/Articles/732740/
Real Time

- Realtime Summit (Oct 2017)
 - Realtime trouble, lessons learned
 - Using Coccinelle to detect and fix nested execution context violations
 - SCHED_DEADLINE: what's next?
 - Future of tracing
 - See https://lwn.net/Articles/738001/

- Status of Preempt-RT patch
 - Hotplug locking
 - Timer wheel rework
 - Big outstanding issue: dentry cache locking
Real Time (cont.)

• Presentations:
 • ELCE 2017 Deterministic Networking for Real-Time Systems (Using TSN) – by Henrik Austad
 • ELCE 2017 Measuring the Impacts of the Preempt-RT Patch – by Maxime Chevallier
 • ELC 2017 Effectively Measure and Reduce Kernel Latencies for Real-time Constraints – by Jim Huang
 • ELC 2017 Real-Time Linux on Embedded Multicore Processors – by Andres Ehmanns

• More stuff at ELC 2018
Security

- Spectre and Meltdown
 - Break security via side-channel timing attacks using speculative execution
 - Variants 1, 2 (Spectre), and 3 (Meltdown)
- Is a family of vulnerabilities related to speculative execution
 - Many modern processors vulnerable
 - Many embedded processors not affected
- Very severe problem:
 - Can read data you’re not supposed to
 - Vulnerability has existed for 20 years!
 - Cannot be fixed with CPU firmware updates
 - Mitigations are expensive
How they work...

Basic idea:
- Make processor execute speculatively
- Get data into cache based on that execution
- Time the access to cache to determine data
Spectre/Meltdown analogy

- Cooking analogy:
 - Mom is making either a pie or a cake
 - The ingredients are secret
 - You aren’t allowed to eat pie, but Mom doesn’t know who the dessert is for when she starts
 - To save time, she makes both, and then throws the pie away (and gives you the cake)
 - She had to go to the store for ingredients
 - She leaves the ingredients in her pantry after using them
 - You ask Mom to make you something with the same ingredients (e.g. cookies)
 - If it takes her a short time, you can figure out what ingredients are in her pantry
 - (You do this a million times)
Spectre – Variant 1

- Variant 1 = bounds-check bypass
 - What is it?
 - Use speculative execution to detect data outside the bounds of an array
 - It does not cross security boundaries
 - What processors affected:
 - Any with speculative execution (ARM, Intel, AMD, ...)
 - Mitigations:
 - fence operation to prevent speculation
 - bounds-friendly mask
 - Prevents speculative code from accessing outside the array
 - array_index_nospec()
Spectre – Variant 2

- Variant 2 = branch target injection
- What is it?
 - poisoning of the branch prediction buffer, to make speculative execution happen “incorrectly”
- What processors affected: Many
- Mitigations:
 - retpoline mechanism
 - fancy returns to avoid speculation
 - Needs compiler support for retpolines
 - RSB (return stack buffer)-stuffing
 - New processor flags by Intel
Meltdown – Variant 3

• Variant 3 = rogue data cache load
 • What is it?
 • Determine data in kernel address space through speculative execution
 • This crosses security boundaries !!
 • Data read prior to check of security privilege (on speculative execution)
 • Results are “retired” when security privilege is processed, but by that time, data is in cache and it’s value can be detected
 • What processors affected: Intel, ARM Cortex A75
 • Mitigations:
 • KPTI (Kernel Page Table Isolation)
 • Remove kernel address space from user process
 • Is very expensive, due to new overhead on every syscall
Security issue handling

- Lots of questions (and some complaints) about how Spectre/Meltdown were handled
- Flaws detected by multiple security researchers in similar time frame (summer 2017)
- All agreed to info. embargo until January
 - Embargo mostly held – news broke on Jan 2
 - Normal Linux security channels were not used
 - Specifically ‘security@kernel.org’
 - Complaints about kernel developers who could help not getting information soon enough
- Distros, and Tier 2 OSes and customers did not get enough notice
Status of mitigations

- **Variant 1:**
 - Fence operations and bounds-masking are still being worked on (not in 4.15, some in 4.16-rc3)
 - Much more work expected

- **Variant 2:**
 - Some repolines are in 4.15
 - Some new flags from Intel to turn off prediction, that the kernel supports

- **Variant 3:**
 - KPTI in 4.15 for Intel
 - KPTI in 4.16 for Arm64

- See https://lwn.net/Articles/746551/
Security

- Kernel hardening
 - Rare_write infrastructure
 - Keep some code and data read-only most of the time
 - https://lwn.net/Articles/724319/
- GCC plugins for kernel security
 - Kernexec
 - Prevent kernel from executing user-space code
 - Structleak (mainlined in 4.11)
 - Zero out kernel structures passed to user space, under some conditions
 - See https://lwn.net/Articles/712161/
 - Randstruct
 - Randomize C structure layout
 - See https://lwn.net/Articles/722293/
Security Presentations

- ELC 2017 Securing Embedded Linux Systems with TPM 2.0 – by Philip Tricca
- ELCE 2017 Security Features for UBIFS – by Richard Weinberger
System Size

- Initramfs compression method is selectable
- Nicolas Pitre work
 - Configurable POSIX timers – in v4.10
 - https://lwn.net/Articles/701095/
 - Mini TTY
 - Smaller implementation of TTY subsystem, for embedded
 - Saves about 38K
 - https://lwn.net/Articles/721074/
 - People wanted refactoring of full-size TTY instead of new small implementation, but Nicolas said that wasn’t feasible
System Size (cont.)

- Shrinking the scheduler
 - Drops features and eliminates realtime and deadline scheduler classes
 - Saves about 20k
 - https://lwn.net/Articles/725376/
 - Lots of resistance to this
 - Code complexity increase is not worth saving 20k (according to Ingo Molnar)
 - Disagreement on whether Linux should support computers with sub-1MB memory
Size Presentations

• ELCE 2017 *Embedded Linux Size Reduction Techniques* – By Michael Opdenacker
 • Great overview of reduction techniques and status
 • Toybox and musl (smaller libc) are worth looking at
 • Long list of things that can be worked on

• Linaro Connect SFO 2017: *Internet of Tiny Linux (IoTL): Episode IV* – by Nicolas Pitre
 • http://connect.linaro.org/resource/sfo17/sfo17-100/

• LinuxCon North America: *Running Linux on Tiny Peripherals* – by Marcel Holtmann
 • Got Linux to around 1MB for IOT sensor project
Nicolas Pitre LWN.net articles

- Nicolas has a series of articles on shrinking the kernel
 - https://lwn.net/Articles/746780
- Covers lots of issues:
 - Link Time Optimization
 - CONFIG_TRIM_UNUSED_KSYMS
 - Removing sub-systems
- It’s a 4-part series
 - One more part coming
 - Last part will requires subscription for first 2 weeks
 - Either subscribe, or wait 2 weeks
Testing

- Kselftest
- Fuego
- Kernelci.org
- LAVA V2
- Kernel regression tracking
- Plumbers session on testing
Kselftest

- Unit test system inside kernel source tree
- Recent work:
 - -silent option, to reduce output clutter
 - Support for $O=$ option, to build outside source directory
 - Lots more regression tests (preferred place for syscall compatibility/regression tests (over LTP)
 - Converting to TAP (Test Anything Protocol) for test output (started in 4.13)
- See https://lwn.net/Articles/737893/
Fuego

- New Test Framework for collaborating on tests and test infrastructure for Linux
- V1.2 Oct 2017
 - Unified output format
 - Convert all test results to JSON, in a format compatible with Kernel CI
 - New pass criteria system
 - Test dependency system
 - Board dynamic variables
- Tests being added on a consistent basis
- Move documentation to reStructuredText
Kernelci.org

• Place to get free build/boot testing for your board
 • Builds 126 trees continuously, then reports any errors
• http://kernelci.org
• Presentations:
 • ELC and ELCE 2016 – by Kevin Hilman
 • Linaro Connect:
 • Kernelci and lava update - See https://lwn.net/Articles/716600/
• The most successful public, distributed build and test system for Linux, in the world!
LAVA

• Linaro Automation and Validation Architecture

V2

• Job files now use Jinja2 templates
 • Was previously hand-written JSON
• Jobs are run asynchronously, without polling,
• ZeroMQ is used for communications.
• ReactOBus is used to run jobs from messages.
• Requires more explicit board configuration
Other efforts

- Kernel regression tracking
 - Thorsten Leemhuis reported at kernel summit issues and difficulties doing regression tracking
 - Kernel developers don’t like Bugzilla
 - Not enough people doing this work (no community effect)
 - Errors on specific hardware are hard to reproduce
 - Would be good to identify sub-systems with more regressions and target those for more testing
 - See https://lwn.net/Articles/737666/ and https://lwn.net/Articles/738216/

- Plumbers sessions on testing
 - See https://lwn.net/Articles/734016/ and https://lwn.net/Articles/735034/
Toolchains

- LLVM 4.0.0 is released
 - Some code size improvements from optimizations (GVNHoist)
 - Experimental support for LLVM coroutines
 - https://lwn.net/Articles/716979/

- Presentations:
 - ELC 2017 - GCC/Clang Optimizations for Embedded Linux – by Khem Raj
 - Plumbers 2017 Building the kernel with Clang – by Nick Desaulniers
 - https://lwn.net/Articles/734071/
Tracing

- Dynamic function tracing events
 - Ability to create a tracepoint for a function at runtime
 - Goal is to avoid having a tracepoint become part of kernel ABI
 - Is work-in-progress
 - See https://lwn.net/Articles/747256

- Presentations:
 - ELC 2017 Dynamic Tracing Tools on ARM/AArch64 Platform: Updates and Challenges - by Hiroyuki Ishii
 - Great overview of Linux tracing capabilities and programs
Miscellaneous

- Printk issues
- Year 2038 work
- Linux issues with Kconfig
- AGL making inroads
- Android mainlining status
- Linux in Supercomputers
- FreeRTOS switched to MIT license
Printk issues

- Discussion on kernel summit mailing list
 - Lots of issues with printk
 - It’s not per-CPU, console lock held too long, it has complicated code paths, and lots more
 - See thread start at:
 - https://lists.linuxfoundation.org/pipermail/ksummit-discuss/2017-June/004358.html

- Recent discussions about KERN_CONT
 - KERN_CONT is unreliable for SMP kernels
 - Latest kernel puts ‘\n’ between lines that don’t have KERN_CONT
 - Eventual removal of KERN_CONT
 - Maybe use of seq_buf for outputting serialized date atomically
 - https://lwn.net/Articles/732420/
Year 2038 work

- 3 areas of work
 - Converting all 32-bit timestamps to 64-bit in the kernel
 - e.g. New statx() system call
 - Many patches are in-progress (vfs layer, v4l, device-mapper, input subsystem)
 - C libraries
 - Lots of work in glibc to make everything backwards compatible
 - Even programs built with 32-bit timestamps should work
 - Distribution builds – fixing up individual packages
- See https://lwn.net/Articles/717076/
Linus issues with Kconfig

- Discussion on kernel summit mailing list
 - Kconfig is too hard for end users
 - What can be done?
 - Linus’ complaint:
 - https://lists.linuxfoundation.org/pipermail/ksummit-discuss/2017-June/004504.html

- Ideas:
 - Config fragments
 - Higher level options
 - Better dependencies
 - From distro feature to kernel config
AGL status

- First car in US with Entune (AGL-based infotainment OS) was 2018 Toyota Camry
 - Announced at Open Source Summit Japan by Toyota
- Mazda and Toyota collaborating on Entune
 - https://www.theregister.co.uk/2017/08/29/mazda_toyota_linux_entune_car_infotainment/
Android mainline status

- Lots of Android SoC support still out-of-tree
 - Vendors have mainlined some things, but it will take time (many years)
 - Android kernels for shipping devices are likely to remain 2-years behind mainline
 - LTS support expires at 2 years
 - Greg will maintain some LTS kernels for 6 years, but stop if vendors don’t use it
- There is interest in improving LTP
 - But mainline on Android devices would be better
- See https://lwn.net/Articles/738225/ for report by Greg Kroah-Hartman
Linux in Supercomputers

- Linux now runs 100% of the top 500 supercomputers
 - As of November, 2017
 - Was 99.6% (498 out of 500) in June 2017
 - Most powerful machine, China’s “Sunway TaihuLight” uses 650,000 processors!
 - See http://www.omgubuntu.co.uk/2017/11/linux-now-powers-100-worlds-top-500-supercomputers
FreeRTOS license change

- FreeRTOS switch to MIT license
 - Richard Barry started working for Amazon last year
 - Amazon released FreeRTOS version 10 with MIT license
 - Removed GPL v2 (with extra clauses)
 - Added branding “fair use” clause to MIT
 - Is a pretty big deal, IMHO
 - See https://lwn.net/Articles/740372
Projects and initiatives

- Shared Embedded Distribution
- LTSI
- Fuego
- eLinux wiki
Shared Embedded Distribution

- **Goals**
 - Create an industry-supported distribution of embedded Linux
 - Main goal is very long term support (15 years)

- **Status**
 - Working on building Debian with Yocto Project
 - 3 projects - meta-debian, isar and elbe wish to collaborate and combine their yocto recipes into a single layer.

- **Next steps**
 - Continued integration of Debian-based build and packaging systems
Long Term Support Initiative

- LTSI 4.9 is current LTSI kernel
 - Work is in progress on next release 4.14
- Most of industry is using LTS or LTSI
- Using upstream-first policy for patches
- Security fixes are very important
- Presentation:
 - ELCE 2017 Using Long Term Stable Kernel for the Embedded Products – by Tsugikazu Shibata
Fuego - Linux Test Framework

- Working on lots of issues
 - LTP improvements and updates
 - Improved visualization and robustness
 - Recently added support for hardware control
- Want to interoperate with board farm standards
 - First, have to create board farm standards
 - Probably plan a test automation track as Plumbers
- Presentation:
 - Japan Jamboree 63: *Fuego Status and Roadmap December 2017* – by Tim Bird
eLinux wiki

- http://elinux.org
 - Web site dedicated to information for embedded Linux developers
 - The wikipedia of embedded linux!
 - Hundreds of pages covering numerous topic areas: bootup time, realtime, security, power management, flash filesystem, toolchain, editors
 - Slides and Videos for 12 years of ELC!!
 - Please use and add to site
Outline

Kernel Versions
Technology Areas
CE Workgroup Projects
Other Stuff
Resources
Trade Associations

- Linaro still doing lots of great work
 - Lava v2 and kernelci
 - Now promoting Zephyr
 - Linaro Connect consistently has useful material

- Linux Foundation
 - Continuing to grow
 - First event in China sold out in 2 weeks (1200 attendees)
 - Over 100 conferences, 67 projects
 - Not just Linux
 - More than 500 members
Conferences

• Embedded Linux Conference Europe
 • Lots of great sessions!
 • See https://elinux.org/ELC_Europe_2017_Presentations
• Embedded Linux Conference 2018
 • March 12-14, Portland, Oregon, USA
• Japan Jamborees
 • Continuing
• Open Source Summit Japan
 • June 20-22, Tokyo, Japan
• ELC Europe 2018
 • October 22-24, Edinburgh, Scotland
Legal Issues

• SPDX adopted by Linux kernel
 • Extensive review done of files without license identifiers
 • Lots of files were tagged with SPDX license IDs
 • See https://lwn.net/Articles/739183/
 • and kernel commit: ead751507
 • applied in 4.14-rc7!
 • https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ead751507de86d90fa250431e9990a8b881f713c
 • Some complaints about process used for patch
Community issues

• Complaints about abusive maintainers in the Linux Community
 • Daniel Vetter gave a talk at LCA about the issue
 • See https://lwn.net/Articles/745817/
 • Other talks at same event describe how to get involved

• Linux Foundation TAB (Technical Advisory Board) is looking at issue
 • “code of conflict” was issued in 2015, but few issues have been brought to TAB
 • Currently discussing possible actions to improve community discourse
Outline

Kernel Versions
Technology Areas
CE Workgroup Projects
Other Stuff
Resources
Resources

- LWN.net
 - http://lwn.net/
 - If you are not subscribed, please do so
- Kernel Newbies
 - http://kernelnewbies.org/Linux_4.??
- eLinux wiki - http://elinux.org/
 - Especially http://elinux.org/Events for slides and videos
- Celinux-dev mailing list
Thanks!
Meltdown Analogy Observations

- You have to start with an empty pantry
 - Must clear the cache before attempting exploit
- The operation has to recover quickly, in order to read privileged data fast
 - If when you ask for a pie, you get put in jail, it’s too slow to get useful data
 - Meltdown had tricky way to avoid fault on privileged read
- Must be able to ask for same ingredient quickly, before pantry gets “overwritten”
- Need a timer to figure out how long Mom took to access pantry
 - One mitigation for Spectre, in web browser, was to eliminate high-res timer access