NAND Chip Driver
Optimization and Tuning

Vitaly Wool
Embedded Alley Solutions Inc.



NAND chip driver

Background and structure

embedded
alley



Basic MTD/NAND chip driver

= Provides
= |/O base address
= ALE/CLE/nCE control function
= Uses
= Default I/0O functions (PIO)
= Default OOB layout
= Default week software ECC (Hamming)

= Poll-based wait for operation completion

™
3
o
®

Q)

—c
rb|m
<la



Advanced NAND chip driver

= May provide

= ready/busy indication function

Chip parameters (delay etc)

Timings (re)initialization
HW ECC functions

Non-standard |I/O functions

= DMA-based I/O
= [nterrupt-based wait

1°)

—c
rb|m
<la



Modern NAND chips features

= Large page size
= 2K/4K

= MLC everywhere
= Cheaper
= More compact
= Faster

= Less robust

= Needs strong ECC algorithms
deployment

™
3
o
®

Q)

—c
mlm
<la



Consequencies

= Capacity increase
= Mostly due to MLC deployment

- 8+ GB chips

= Speed increase
= 100+ MB/s

= NAND controller hardware ECC support
= Should be applicable for different chip page
Sizes

embe
- |

—c
m|m
<la



NAND driver requirements

= Functional

= Strong error correction
= No writes w/o ECC
= Ability to handle more than 4GB
= Actually not a chip driver level requirement
= Performance

= Lose no more than 50% of chip I/O performance
capabilities

= What capabilities?

= How to calculate “best achievable” rate embedded



Consequences

= Hardware ECC necessary
= Can't meet performance requirements otherwise

= DMA is desired

= Hard to meet performance requirements otherwise
= Lightens CPU load

= Spare OOB area should be either covered with
ECC or kept unused

= Can't use some flash filesystems if
OOB is not covered

™
3
o
®

= «stock» yaffs2 is out then

—c
m|m
<la



NAND chip driver

Optimization and profiling step-by-step

embedded
alley



Adding HW ECC support

= HW ECC controller

= May just be calculating syndromes over
provided data

= But may as well be doing NAND 1/O itself
= HW ECC is not a performance issue cure

= HW ECC might be calculated over 512-byte
blocks

™
3
o
®

o]

—c
m|m
<la



600

500

400

300

200

100

MLC 1I/O performance chart

) w/o timing opts RS HW ECC, no DMA

Default SWECC, no DMA RS SW ECC, no DMA

= Comments

= Timing optimization is important
= RS HW ECC runs over 512b blocks
= Slower than stock SW ECC

M Read operation, kbps
B Write operation, kbps

1°)

—c
rb|m
<la



MLC 1I/O performance chart

20000
18000
16000
14000
12000
10000
8000
6000
4000

2000 Ay

0

B Read operation, kbps
I Write operation, kbps

Default SWECC, no DMA Theoretical

Comments

= Still a lot slower than the chip
allows

™
3
o
®

Q)

—c
rb|m
<la



Adding DMA support

= NAND [|/O methods should use DMA

= Problem: making friends with HW ECC
= HW ECC might be calculated over 512-byte
blocks
= ECC bytes might be spread across the page

= HW ECC engine does ECC NAND [/O
automatically

= |[/O is not quite consequent

™
3
o
®

o]

—c
m|m
<la



MLC 1I/O performance chart

700

600

500

400

300 = e ;’Ei{ZL';’,T ::EE?
200

100 /

0

RS HW ECC, no DMA
RS SW ECC, no DMA RS HW ECC, simple DMA

= Comments
= Hamming SW ECC dropped from the chart

= Not strong enough anyway
= Straightfoward DMA didn't help much

™
3
o
®

Q)

—c
rb|m
<la



MLC 1I/O performance chart

20000
18000
16000
14000
12000
10000
8000
6000
4000

2000 AR vy

0

B Read operation, kbps
I Write operation, kbps

RS HW ECC, simple DMA Theoretical

Comments

= Again a lot slower than the chip
allows

™
3
o
®

Q)

—c
rb|m
<la



DMA usage pattern

= NAND chips better do
sequential 1/0
operations
= Goes well with DMA w/
chaining
= Can do HW ECC page

read in a signe DMA
chain

™
3
o
®

Q)

—c
m|m
<la



MLC 1I/O performance chart (RS ECC)

1200
1000
800
600

M Read operation, kbps

400 B Write operation, kbps

0 y
HW ECC, no DMA HW ECC, chained DMA
SW ECC, no DMA HW ECC, simple DMA

= Comments
= Getting better... :-)

embedded
alley

(—
(—



MLC 1I/O performance chart

20000
15000
10000
5000
ax & B

B Read operation, kbps
I Write operation, kbps

0
RS HW ECC, chained DMA DMA, no ECC Theoretical

= Comments

= How to calculate the best achievable rate?
= DMA with no ECC gives the idea

= We're not that far from it (about 50%) embedded
— alley



Further optimization

= No redunant data copys in driver

= Data from a buffer supplied is copied to the
local buffer

= Redundant: why not use the supplied buffer
directly?
= That's UNSAFE

= e.g. vmalloc()'s not kmalloc()'s in
jffs2 and ubi code

embedded
=i



Further optimization

= The solution is to avoid redundant copys

= Also, preallocate DMAable buffers for the other
case

= kmalloc'ing won't stand in the critical path
= A simple own memory management thing

= Very simple one — buffers are of the same size
= Either linked list or stack of buffers

= Use kmem_cache XXX for that

embedded
=i



MLC HW ECC performance chart

2500

2000
1500
B Read operation, kbps
1000 i Write operation, kbps
0 4
simple DMA optimized chained DMA
no DMA chained DMA best achievable rate

embedded
=i



Comments/Artifacts

= The former results are all for filesystem-
less data transfers

= The performance results for filesystems
might deviate from the former quite a bit

= YAFFS2 is faster on single big file I/O than
JFFS2

= As soon as we don't hack JFFS2
to not use vmalloc ;-)

embedded
=i



= Modern NAND chips offer performance level that
can't be easily achieved within an SoC

= One has to consider the «best achievable» rate for a
particular SOC/NAND chip combination

= No exact techniques

= Optimized NAND driver may work some 5x
faster than a non-optimized one

= worth messing around!
= Get closer to the best achievable rate

= But... farther from community acceptance?



Questions?

mailto:vital@embeddedalley.com



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

