
What's New with U-Boot?
ELC 2019
San Diego, CA

Simon Glass
Chrome OS Boulder

Goals of this talk

● Tell you things useful for using U-Boot
● Update you on the current state of U-Boot

○ Changed that are completed
○ Changes still in progress
○ Potential future changes

● Point a little way into the future

● What is 'new' for you depends on how closely you follow U-Boot
○ Many people just use the same version for years
○ I will mostly focus on things in the last few years that I have some idea about...

■ ...without completely ignoring things 2-5 years old

U-Boot overview

● Tom Rini is head custodian across U-Boot (since 2012)
○ About 50 custodians for different architectures and subsystems

● About 2.2m lines of C, 35k lines of assembler
○ Various tools written mostly in C and Python

● Release cycle currently 3 months
○ Two weeks between each release candidate

● Very active and dynamic project
○ About 400 individual contributors and 6k commits in the last year
○ Many ongoing improvement efforts on code structure, testing

● Strong links to Linux and distributions
○ Some subsystems share code, also use device tree files
○ Fedora, Debian, Yocto

What's not new?

● Some things I won't talk about!

● Fast, small, simple, portable, configurable, flexible
● Wide architecture (13) and board (~1400) support
● Tertiary and Secondary Program Loader (TPL, SPL)
● Lots of support for loading different image types

○ Flexible Flat Image Tree (FIT) format with compression, hashing, signing

● 'Sandbox' architecture for rapid development/debugging on a host
● Command line with about 150 top-level commands

○ Many with sub-commands; console supports serial / video / USB console

● Wide partition, filesystem and networking support
● Subsystems and drivers for most types of peripherals

Some old new things (> 2 years)

● Driver model
● Device tree
● Kbuild
● Kconfig
● Verified / secure boot
● Bootstage / trace
● Buildman
● DFU / fastboot
● Coverity

Driver model

● Comprehensive and efficient
driver model

● 'Uclasses' for most
subsystems

 const char *mmc_regulators[] = {
 "VDDQ_EMMC_1.8V",
 "VDDQ_EMMC_2.8V",
 "TFLASH_2.8V",
 NULL,
 };

 if (regulator_list_autoset(mmc_regulators, NULL, true))
 pr_err("Unable to init all mmc regulators\n");

/ {
...
i2c_0: i2c@13860000 {

#address-cells = <1>;
#size-cells = <0>;
compatible = "samsung,s3c2440-i2c";

};

&i2c_0 {
max77686: max77686_pmic@09 {

voltage-regulators {
ldo4_reg: LDO4 {

regulator-name = "VDDQ_MMC2_2.8V";
regulator-min-microvolt = <2800000>;
regulator-max-microvolt = <2800000>;

};
};

};
};

Bootstage and Tracing

● Track boot time through all phases
○ TPL, SPL, U-Boot proper
○ Pass to Linux via device tree

● Track function calls and time

=> trace stats
 671,406 function sites
 1,279,450 function calls
 0 untracked function calls
 950,490 traced function calls
 16 maximum observed call depth
 15 call depth limit
 1,275,767 calls not traced due to depth
=> tftpput ${profbase} ${profoffset} 192.168.4.1:trace

bootstage report
Timer summary in microseconds:
 Mark Elapsed Stage
 0 0 reset
 100,000 100,000 spl_start
 842,156 742,156 board_init_f
 899,769 57,613 board_init_r
 902,927 3,158 board_init
 927,905 24,978 board_init_done
 945,247 17,342 id=64
 950,104 4,857 main_loop
 950,104 0 main_loop

Accumulated time:
 188,378 lcd

Buildman

● Multi-threaded build / analysis tool for U-Boot
● Automatic toolchain download
● Builds any/all boards / arch
● Supports building multiple commits, with analysis:

○ Which commits introduce or fix errors
○ Overall (and per-function '--bloat') code size changes
○ CONFIG changes, environment change

New things (< 2 years)

● Device-tree overlays
● Live tree
● OF-platdata / dtoc
● Android, OP-TEE
● Gitlab
● New hardware / automated testing
● EFI
● Documentation format
● Lots of board/arch things I won't mention (e.g. RISC-V)

Device-tree overlays

● U-Boot can do this
○ Provide a completed DT to linux

● SPL in progress

Base board

Relay
board

=> host load hostfs - 0 /tmp/b/rpi_2/dts/dt.dtb
18837 bytes read in 0 ms
=> host load hostfs - 10000
/home/sjg/c/rpi/hd44780-lcd.dtbo
1662 bytes read in 1 ms (1.6 MiB/s)
=> fdt addr 0
=> fdt list /auxdisplay
libfdt fdt_path_offset() returned FDT_ERR_NOTFOUND
=> fdt resize
=> fdt apply 10000
=> fdt list /auxdisplay
auxdisplay {

phandle = <0x0000005a>;
display-width-chars = <0x00000010>;
display-height-chars = <0x00000002>;
rs-gpios = <0x00000016 0x00000014 0x00000000>;
enable-gpios = <0x00000016 0x00000015 0x00000000>;
compatible = "hit,hd44780";

 ...
};
=>

Live tree

● CONFIG_OF_LIVE
● New dev_read_…() API

○ Supports flat and live tree transparently

● Tree is 'unflattened' during relocation
○ Live tree used after that

OF-platdata / dtoc

● libfdt and DT add 6-7KB size to U-Boot SPL
● OF-platdata avoids this
● dtoc generates C structures from selected DT nodes automatically

static const struct dtd_rockchip_rk3368_dmc dtv_dmc_at_ff610000 = {
 .reg = {0xff610000, 0x400, 0xff620000, 0x400},
 .rockchip_cru = 0xb,
 .rockchip_ddr_frequency = 0x2faf0800,
 .rockchip_ddr_speed_bin = 0xc,
 .rockchip_grf = 0xc,
 .rockchip_memory_schedule = 0x0,
 .rockchip_msch = 0xd,
};
U_BOOT_DEVICE(dmc_at_ff610000) = {
 .name = "rockchip_rk3368_dmc",
 .platdata = &dtv_dmc_at_ff610000,
 .platdata_size = sizeof(dtv_dmc_at_ff610000),
};

};
struct dtd_rockchip_rk3368_dmc {
 fdt64_t reg[4];
 fdt32_t rockchip_cru;
 fdt32_t rockchip_ddr_frequency;
 fdt32_t rockchip_ddr_speed_bin;
 fdt32_t rockchip_grf;
 fdt32_t rockchip_memory_schedule;
 fdt32_t rockchip_msch;
};

&dmc {
rockchip,memory-schedule = <DMC_MSCH_CBDR>;
rockchip,ddr-frequency = <800000000>;
rockchip,ddr-speed-bin = <DDR3_1600K>;

};

Example of-platdata driver code
#if CONFIG_IS_ENABLED(OF_PLATDATA)
static int conv_of_platdata(struct udevice *dev)
{

struct rk3368_sdram_params *plat = dev_get_platdata(dev);
struct dtd_rockchip_rk3368_dmc *of_plat = &plat->of_plat;

plat->ddr_freq = of_plat->rockchip_ddr_frequency;
plat->ddr_speed_bin = of_plat->rockchip_ddr_speed_bin;
plat->memory_schedule = of_plat->rockchip_memory_schedule;

return 0;
}
#endif

static int rk3368_dmc_probe(struct udevice *dev)
{

struct dram_info *priv = dev_get_priv(dev);

#if CONFIG_IS_ENABLED(OF_PLATDATA)
ret = conv_of_platdata(dev);
if (ret)

return ret;
#endif

struct rk3368_sdram_params {
#if CONFIG_IS_ENABLED(OF_PLATDATA)

struct dtd_rockchip_rk3368_dmc of_plat;
#endif

struct rk3288_sdram_pctl_timing
pctl_timing;

u32 trefi_mem_ddr3;
struct rk3288_sdram_channel chan;
struct regmap *map;

};

Android and OP-TEE

● Based on Chrome OS verified boot
○ Which is partly based on Android...

● libavb incorporated into U-Boot
● New 'avb' command
● New 'tee' uclass (no command yet)

avb_verify=avb init $mmcdev; avb verify;
if run avb_verify; then
 echo AVB verification OK. Continue boot;
 set bootargs $bootargs $avb_bootargs;
else
 echo AVB verification failed;
 exit;
fi;

Gitlab

● U-Boot custodian trees moved to
to Gitlab in mid 2019
○ Travis-CI still maintained for now

● Automatic builds / notifications
○ Help out by adding a build server to

increase capacity

New hardware / automated testing

● pytest
● tbot
● Target control - FlashAir, SDWire
● Planning to connect to gitlab

EFI

● U-Boot can run EFI programs
○ Used for some distributions (SUSE)
○ EFI support has grown significantly in the last few years
○ Replace UEFI in many cases
○ E.g. supports booting grub2
○ Includes storage, console, networking, etc.

● Good set of automated tests

● Also can boot U-Boot as an EFI payload
○ It loads as an EFI app and then takes over!

Documentation format

● U-Boot has a lot of features
○ About 550 files in doc/

● Recently moved to restructured text (.rst)
● Directory structure is starting to mirror code

○ doc/arch/…
○ doc/board/...

Random other things dear to my heart

● Binman
● x86 support
● Logging
● Patman

Binman

● Firmware packer
● Operates from a device-tree config
● Image info available to U-Boot at run-time

○ Position of each entry in the image
○ Via device tree or automatic linker symbols

● Supports signing, CBFS, related entries
● Easy to extend (written in Python)
● Fast (generally one pass)
● Tests provide 100% code coverage

#include <config.h>

/ {
 binman {
 filename = "image.rom";
 pad-byte = <0xff>;
 u-boot-spl {
 };
 u-boot-img {
 offset = <CONFIG_SPL_PAD_TO>;
 };
 cbfs {
 size = <0x10000>;
 intel-vga {
 cbfs-type = "raw";
 };
 intel-fsp-m {
 cbfs-type = "raw";
 cbfs-compress = "lz4";
 };
 intel-fsp-s {
 cbfs-type = "raw";
 cbfs-compress = "lz4";
 };
 };
 };
};

x86 support

● Supports bare-metal on about 10 SoCs (e.g. Broadwell, Apololake soon)
○ Supports booting from coreboot on most boards

● Intel FSP support for several platforms
○ FSP2 support in the works :-)

● Full use of driver model
● Binman provides image structure

○ Exquisitely complex

● New slimbootloader support

Logging

● Provides a way to log events
○ Either to console or your own driver
○ E.g. store in memory for passing to Linux

● log_debug(), log_warn(), etc.
● Supports log levels and log categories

○ Build-time and run-time filtering

● Can select log level to build with (to reduce code size)

if (hdr->magic != BLOBLIST_MAGIC)
return log_msg_ret("Bad magic", -ENOENT);

log(LOGC_BLOBLIST, LOGL_DEBUG, "Found existing bloblist\n");

U-Boot 2019.10-rc2-00016-g81fed78c0a (Aug 19 2019 - 07:28:05
-0600)

Model: sandbox
u-boot, a command line test interface to U-Boot

Usage: u-boot [options]
Options:
 -L, --log_level <arg> Set log level (0=panic, 7=debug)

Patman

● Easily check and sent patches to mailing lists
○ U-Boot, kernel and others

● Manages change logs and cover letter
● Avoids common user errors
● Little demo if time

How might U-Boot look in a few years?

● U-Boot's direction is set by its contributors
● Contributions often come out of the blue

○ "I wish U-Boot could…"
○ "My architecture needs to be able to…"
○ "The xxx implementation is terrible…"
○ "We need a new way to define…."

● U-Boot exists to solve the booting problem
○ As needs evolve, so will U-Boot

● But since you asked...

How might U-Boot look in a few years?

● Most custodians will have little automated test farms
○ At present not very many (Denx, Consulko, Nvidia, Linaro, Samsung…?)
○ Faster release cycle, fewer regressions

● Driver-model migration complete
○ Deadlines in 2019 include MMC, USB, BLK, SATA, SPI, PCI, VIDEO
○ And perhaps Kconfig (~4500 completed so far)
○ Perhaps more driver-model support on the command line?

● More Linux code in U-Boot
● All new code comes with tests

○ At present this is true with driver model, filesystems, EFI, but is far from universal

● Reduced image size

Thank you for listening

● U-Boot is an open-source firmware project
● We are a friendly and welcoming bunch!

○ (if not, please let me know)

● Go forth and U-Boot
○ Please send patches

● My details
○ Simon Glass
○ to: u-boot@lists.denx.de
○ cc: sjg@chromium.org

Links (1)

● Driver model
○ https://elinux.org/images/c/c4/Order_at_last_-_U-Boot_driver_model_slides_%282%29.pdf

● Device tree
○ https://elinux.org/Device_Tree_Reference

● Kbuild
○ https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt

● Kconfig
○ https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

● Custodian trees https://gitlab.denx.de/u-boot/custodians?page=1
● Android verified boot and OP-TEE

○ https://www.slideshare.net/GlobalLogicUkraine/uboot-and-android-verified-boot-20
○ http://connect.linaro.org.s3.amazonaws.com/hkg18/presentations/hkg18-124.pdf

https://elinux.org/images/c/c4/Order_at_last_-_U-Boot_driver_model_slides_%282%29.pdf
https://elinux.org/Device_Tree_Reference
https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://gitlab.denx.de/u-boot/custodians?page=1
https://www.slideshare.net/GlobalLogicUkraine/uboot-and-android-verified-boot-20
http://connect.linaro.org.s3.amazonaws.com/hkg18/presentations/hkg18-124.pdf

Links (2)

● Verified boot
○ https://lwn.net/Articles/571031/
○ https://www.denx.de/wiki/pub/U-Boot/MiniSummitELCE2013/U-Boot_verified_RSA_boot_flow_on

_arm_target.pdf
○ https://events.static.linuxfound.org/sites/events/files/slides/elce-2014.pdf
○ https://www.slideshare.net/GlobalLogicUkraine/uboot-and-android-verified-boot-20
○ https://ai.google/research/pubs/pub42038

● buildman - 'buildman -H'
● DFU

○ http://www.ti.com/lit/an/sprac65a/sprac65a.pdf
○ https://www.denx.de/wiki/pub/U-Boot/MiniSummitELCE2013/dfu_elce_u-boot.pdf

●

https://lwn.net/Articles/571031/
https://www.denx.de/wiki/pub/U-Boot/MiniSummitELCE2013/U-Boot_verified_RSA_boot_flow_on_arm_target.pdf
https://www.denx.de/wiki/pub/U-Boot/MiniSummitELCE2013/U-Boot_verified_RSA_boot_flow_on_arm_target.pdf
https://events.static.linuxfound.org/sites/events/files/slides/elce-2014.pdf
https://www.slideshare.net/GlobalLogicUkraine/uboot-and-android-verified-boot-20
https://ai.google/research/pubs/pub42038
http://www.ti.com/lit/an/sprac65a/sprac65a.pdf
https://www.denx.de/wiki/pub/U-Boot/MiniSummitELCE2013/dfu_elce_u-boot.pdf

Links (3)

● Fastboot
○ https://www.denx.de/en/pub/Documents/Presentations/EWC2012_Roeder_Zundel_Fastboot.pdf

● Device-tree overlays
○ https://learn.adafruit.com/introduction-to-the-beaglebone-black-device-tree/device-tree-overlays

● Tizen SDWire https://wiki.tizen.org/SDWire
● Tbot https://github.com/hsdenx/tbot
● EFI

○ https://www.suse.com/media/article/UEFI_on_Top_of_U-Boot.pdf
○ http://events17.linuxfoundation.org/sites/events/files/slides/Marrying%20U-Boot%2C%20UEFI%2

0and%20grub.pdf

● OP-TEE https://www.op-tee.org/

https://www.denx.de/en/pub/Documents/Presentations/EWC2012_Roeder_Zundel_Fastboot.pdf
https://learn.adafruit.com/introduction-to-the-beaglebone-black-device-tree/device-tree-overlays
https://wiki.tizen.org/SDWire
https://github.com/hsdenx/tbot
https://www.suse.com/media/article/UEFI_on_Top_of_U-Boot.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Marrying%20U-Boot%2C%20UEFI%20and%20grub.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Marrying%20U-Boot%2C%20UEFI%20and%20grub.pdf
https://www.op-tee.org/

