Google
What's New with U-Boot?

ELC 2019
San Diego, CA

Simon Glass
Chrome OS Boulder

Goals of this talk

e Tell you things useful for using U-Boot

e Update you on the current state of U-Boot
o Changed that are completed
o Changes still in progress
o Potential future changes

e Point a little way into the future

e Whatis 'new' for you depends on how closely you follow U-Boot
o Many people just use the same version for years
o | will mostly focus on things in the last few years that | have some idea about...
m ..without completely ignoring things 2-5 years old

Google

U-Boot overview

e Tom Rini is head custodian across U-Boot (since 2012)
o About 50 custodians for different architectures and subsystems
e About 2.2m lines of C, 35k lines of assembler
o Various tools written mostly in C and Python
e Release cycle currently 3 months
o Two weeks between each release candidate

e Very active and dynamic project

o About 400 individual contributors and 6k commits in the last year
o Many ongoing improvement efforts on code structure, testing

e Strong links to Linux and distributions

o Some subsystems share code, also use device tree files
o Fedora, Debian, Yocto

Google

What's not new?

Google

Some things | won't talk about!

Fast, small, simple, portable, configurable, flexible
Wide architecture (13) and board (~1400) support
Tertiary and Secondary Program Loader (TPL, SPL)

Lots of support for loading different image types

o Flexible Flat Image Tree (FIT) format with compression, hashing, signing
'Sandbox’ architecture for rapid development/debugging on a host
Command line with about 150 top-level commands

o Many with sub-commands; console supports serial / video / USB console
Wide partition, filesystem and networking support

Subsystems and drivers for most types of peripherals

Some old new things (> 2 years)

Driver model

Device tree

Kbuild

Kconfig

Verified / secure boot
Bootstage / trace
Buildman

DFU / fastboot
Coverity

Google

Driver model

e Comprehensive and efficient
driver model

e 'Uclasses' for most
subsystems

const char *mmc_regulators[] = {
"VDDQ_EMMC 1.8V",
"VDDQ_EMMC 2.8V",
"TFLASH 2.8V",
NULL,

};

/|

i2c_0: i2c@13860000 {
#address-cells = <1>;
#isize-cells = <0>;
compatible = "samsung,s3c2440-i2c";

};

&i2c 0 {
max77686: max77686_pmic@09 {
voltage-regulators ({
ldo4_reg: LDO4 {
regulator-name = "VDDQ MMC2 2.8V";
regulator-min-microvolt = <2800000>;
regulator-max-microvolt = <2800000>;

if (regulator_ list_ autoset(mmc regulators, NULL, true))
pr_err("Unable to init all mmc regulators\n");

Google

=> trace stats

671,406 function sites
o 1,279,450 function calls
Bootstage and TraCIng 0 untracked function calls
950,490 traced function calls
16 maximum observed call depth
. 15 call depth limit
e Track boot time through all phases 1,275,767 calls not traced due to depth
=> tftpput ${profbase} ${profoffset} 192.168.4.1:trace
o TPL, SPL, U-Boot proper

o Pass to Linux via device tree
e Track function calls and time

bootstage report
Timer summary in microseconds:
Mark Elapsed Stage
0 0 reset
100,000 100,000 spl start
842,156 742,156 board init f

899,769 57,613 board init r
902,927 3,158 board init
927,905 24,978 Dboard_init done
945,247 17,342 id=64

950,104 4,857 main loop
950,104 0 main loop

Accumulated time:
188,378 1lcd

Google

.) ~/u> buildman -b bm-try --step 0 firefly-rk3399 -sBS
boards.cfg is up to date. Nothing to do.
Summary of 2 commits for 1 boards (1 thread, 32 jobs per thread)

01: rockchip: xhci: Remove RK3399 support
. aarché4: w+ firefly-rk3399
UI I I Ian 145: rockchip: sdhci: Fix sdhci mmc driver probe abort

aarché4: (for 1/1 boards)
firefly-rk3399 :

u-boot: add: 0/0, grow: 1/0 bytes: 76/0 (76)
function old new delta

spl-u-boot-spl: add: 1/-1, grow: 1/-1 bytes: /-108 (56)

function old new delta

board init f
secure timer init

e Multi-threaded build / analysis tool for U-Boot
e Automatic toolchain download
e Builds any/all boards / arch
e Supports building multiple commits, with analysis:
o Which commits introduce or fix errors
o Overall (and per-function '--bloat’) code size changes i
o CONFIG changes, environment change boara;ﬁ'zfglﬂdf}:”t(‘)bdgfjrﬁothing e
Google ulldiny e om0 Loy bk (o2 ey T I e i)

New things (< 2 years)

Device-tree overlays

Live tree

OF-platdata / dtoc

Android, OP-TEE

Gitlab

New hardware / automated testing

EFI

Documentation format

Lots of board/arch things | won't mention (e.g. RISC-V)

Google

Device-tree overlays

e U-Boot can do this
o Provide a completed DT to linux

e SPL in progress

Base board

Relay
board

Google

=> host load hostfs - 0 /tmp/b/rpi_2/dts/dt.dtb
18837 bytes read in 0 ms

=> host load hostfs - 10000
/home/sjg/c/rpi/hd44780-1cd.dtbo

1662 bytes read in 1 ms (1.6 MiB/s)

=> fdt addr 0

=> fdt list /auxdisplay

libfdt fdt path offset() returned FDT ERR_ NOTFOUND
=> fdt resize

=> fdt apply 10000

=> fdt list /auxdisplay

auxdisplay {

phandle = <0x0000005a>;

display-width-chars = <0x00000010>;
display-height-chars = <0x00000002>;

rs-gpios = <0x00000016 0x00000014 0x00000000>;
enable-gpios = <0x00000016 0x00000015 0x00000000>;
compatible = "hit,hd44780";

static int sata_ceva_ofdata_to_platdata(struct udevice *dev)
{
struct ceva_sata_priv *priv = dev_get_priv(dev);
struct resource res_regs;
int ret;

Live tree

(dev_read_bool(dev,
priv->flag |= FLAG_COHERENT,

priv->base = dev_read_addr(dev);

e CONFIG_OF_LIVE Lt (priv->base == FOT_ADDR_T_NONE)

1 -EINVAL;
L NeW dev_read_() API ret = :]ev_read_resource_byname(dev, , &res_regs);
. if (ret)
o Supports flat and live tree transparently _ priv->ecc_base = 0;

e Treeis 'unflattened’ during relocation ~ priv->ecc base = res_regs.start;
o Live tree used after that priv->soc = dev_get_driver_data(dev);

ret = dev_read_phandle_with_args(dev,
&args);
(ret) {

pr_err(
__func__, ret);
ret;

bypass = dev_read_bool(dev,
digbyp = dev_read_bool(dev,
lse_css = dev_read_bool(dev,

}

ret = uclass_get_device_bhy_ofnode(UCLASS_DMA, args.node, &dev_dma),
if (ret) {

pr_err(

1sedrv = dev_read_u32_default(dev, .
LSEDRV_MEDIUM_HIGH),

’

__func__, ret);
1 ret;

Google

&dmc {
rockchip,memory-schedule = <DMC_MSCH_CBDR>;
rockchip,ddr-frequency <800000000>;

O F_p | a-td a.ta / d.tOC . rockchip,ddr-speed-bin = <DDR3_1600K>;

e |ibfdt and DT add 6-7KB size to U-Boot SPL
e OF-platdata avoids this
e dtoc generates C structures from selected DT nodes automatically

bi static const struct dtd_rockchip rk3368 dmc dtv_dmc_at ££610000 =
struct dtd_rockchip rk3368 dmc { .reg = {0xf£610000, 0x400, 0x££620000,
fdte4_t reg[4]; .rockchip cru = 0xb,
fdt32_t rockchip cru; .rockchip ddr frequency = 0x2faf0800,
fdt32_t rockchip ddr frequency; .rockchip ddr speed bin = 0Oxc,
fdt32_t rockchip ddr_ speed bin; .rockchip grf = 0Oxc,
fdt32_t rockchip grf; .rockchip memory schedule = 0x0,
£dt32_t rockchip memory schedule; .rockchip msch = 0xd,
fdt32_t rockchip msch; };
}s; U_BOOT _DEVICE (dmc_at ££610000) = {
.name = "rockchip rk3368 dmc",
.platdata = &dtv_dmc_at_f£f£610000,

.platdata size = sizeof (dtv_dmc_at ££610000),

Google

Example of-platdata driver code

#if CONFIG_IS_ENABLED (OF PLATDATA)
static int conv_of platdata(struct udevice *dev)
{
struct rk3368 sdram params *plat = dev_get platdata(dev);
struct dtd rockchip rk3368 dmc *of plat = &plat->of plat;

plat->ddr_ freq = of_plat->rockchip ddr frequency;
plat->ddr_speed bin = of_ plat->rockchip ddr speed bin;
plat->memory schedule = of plat->rockchip memory schedule;

return O;

}
#endif

static int rk3368_dmc probe (struct udevice *dev)
{

struct dram_info *priv = dev_get priv(dev);

#if CONFIG_IS_ENABLED (OF PLATDATA)
ret = conv_of platdata(dev);
if (ret)

return ret;
#endif

Google

struct rk3368_ sdram params {
#if CONFIG_IS_ENABLED (OF PLATDATA)
struct dtd_rockchip rk3368 dmc of plat;
#endif
struct rk3288_ sdram pctl_ timing
pctl_timing;
u32 trefi mem ddr3;
struct rk3288_ sdram channel chan;
struct regmap *map;

Android and OP-TEE

o Which is partly based on Android...
e libavb incorporated into U-Boot
e New '‘avb’' command

avb - Provides commands for testing Android Verified Boot 2.0 functionality

init <dev> - initialize avb2 for <dev>

read_rb <nu - read rollback index at location <num>

write rb <num> <rb> - write rollback index <rb> to <num>
is_unlocked - returns unlock status of the device

get_uuid <partname> - read and print uuid of partition <part>

read part <partname> <offset> <num> <addr> - read <num> bytes from

partition <partname> to buffer <addr>

o Based on Chrome OS Verlﬂed boo't read_part_hex <partname> <offset> <num> - read <num> bytes from

partition <partname> and print to stdout

write_part <partname> <offset> <num> <addr> - write <num> bytes to
<partname> by <offset> using data from <addr>

read_pvalue <name> <bytes> - read a persistent value <name>

write pvalue <name> <value> - write a persistent value <name>
verify - run verification process using hash data

from vbmeta structure

e New 'tee' uclass (no command yet)

Google

avb_verify=avb init $mmcdev; avb verify;
if run avb_verify; then
echo AVB verification OK. Continue boot;
set bootargs $bootargs $avb_bootargs;
else
echo AVB verification failed;
exit;
fi;

43 Pipeline - U-Boot / Custoc x

& > C & httpsy//gitlab.denx.de/u-boot/custodians/u-boot-dm/pipelines/478

& GitLab Projects Groups Snippets Help

(; '.t I b b x86: Move fsp_ffs.h include to fsp_arch.h
I a This include file is only used for FSP v1. Avoid including it from

-] fdt_support.h so we can use the latter with FSP v2.
B Series-to: u-boot

Series-cc: bin
o Cover-letter:

x86: Prepare for adding FSP2 code

e U-Boot custodian trees moved to o Rl i e e s e

version 1 is used. Since this code was added to U-Boot a new version
(FSP2) has been produced by Intel.

. . . a
to Gitlab in mid 2019 o et o it et o Fere e e oot ot e

a directory that indicates it is used for FSP1.
END

o Travis-Cl still maintained for now

. AUtomatiC bu”ds / notiﬂ Cations @ 30 jobs for x86-working in 134 minutes and 35 seconds (queued for 131 minutes and 59 seconds)
o Help out by adding a build server to a
increase capacity

© 41902976 - ®

Pipeline jobs 30

Testsuites Test.py World build

(©) Build tools-only © evb-ast2500 te... (©) build all 32bit ..
@ Check for confi... @ integratorcp_c... @ build all 64bit ...
@ Run binman, b... @ gemu-ppce500... @ build all Power...
@ cppcheck @ gemu-riscv64 t... @ build all other ...
@ grep TODO/FIX... @ qemu-x86 test....

@ sloccount @ qemu-x86_64 t...
@ gemu_armé4 t...

Google @ gemu_arm test...

»
1 ®_ % , =

New hardware / automated testing

e pytest

e thot _FlashAir, J
e Target control - FlashAir, SDWire U(OG>4
e Planning to connect to gitlab i

test/py/tests/test ofplatdata.py ss

test/py/tests/test_pinmux.py

test/py/tests/test_sandbox_exit.py ..

test/py/tests/test _sf.py ssss

test/py/tests/test_shell basics.py
sleep.py .

tpm2.py # lab specific changes for my lab

ums.py s
test/py/tests/test_unknown_cmd.py . def set labspecific(tb):
test/py/tests/test_ut.py

if tb.config.boardname == 'am335x_evm'
tb.config.kermit_line ‘/dev/ttybbb'
ub load_board env_set = [
etenv serverip 192.168.2.1",
et91v netmask 455.255.455.0',
setenv ipaddr 192.168.2.11°',

EFI

e U-Boot can run EFI programs

Used for some distributions (SUSE)

EFI support has grown significantly in the last few years
Replace UEFI in many cases

E.g. supports booting grub2

Includes storage, console, networking, etc.

e Good set of automated tests

O O O O O

e Also can boot U-Boot as an EFI payload
o Itloads as an EFl app and then takes over!

Google

Documentation format

e U-Boot has a lot of features
o About 550 files in doc/

e Recently moved to restructured text (.rst)

e Directory structure is starting to mirror code
o doc/arch/...
o doc/board/...

Google

Random other things dear to my heart

Binman
x86 support

Logging
Patman

Google

Binman

Google

Firmware packer
Operates from a device-tree config

Image info available to U-Boot at run-time
o Position of each entry in the image
o Via device tree or automatic linker symbols

Supports signing, CBFS, related entries
Easy to extend (written in Python)

Fast (generally one pass)

Tests provide 100% code coverage

#include <config.h>

/

};

{

binman {
filename = "image.rom";
pad-byte = <0xff>;

};

u-boot-spl {
};
u-boot-img {
offset = <CONFIG_SPL_PAD_TO>;
};
cbfs {
size = <0x10000>;
intel-vga {
cbfs-type = "raw";
};
intel-fsp-m {
cbfs-type = "raw";
cbfs-compress = "1z4";
};
intel-fsp-s {
cbfs-type = "raw";
cbfs-compress = "1z4";
};
};

X86 support

e Supports bare-metal on about 10 SoCs (e.g. Broadwell, Apololake soon)
o Supports booting from coreboot on most boards

e Intel FSP support for several platforms FT\ - F L
o FSP2 support in the works :-) | § e

e Full use of driver model | EH =

e Binman provides image structure |
o Exquisitely complex

e New slimbootloader support

Google

U-Boot 2019.10-rc2-00016-g81fed78cla (Aug 19 2019 - 07:28:05
-0600)

LO g g i n g Model: sandbox

u-boot, a command line test interface to U-Boot

Usage: u-boot [options]
Options:

® PrOV|deS a Way to |Og events -L, --log_level <arg> Set log level (0O=panic, 7=debug)
o Either to console or your own driver
o E.g. store in memory for passing to Linux

e log_debug(), log_warn(), etc.

e Supports log levels and log categories
o Build-time and run-time filtering

e Can select log level to build with (to reduce code size)

if (hdr->magic != BLOBLIST MAGIC)
return log msg_ret("Bad magic", -ENOENT) ;

log (LOGC_BLOBLIST, LOGL DEBUG, "Found existing bloblist\n") ;

Google

Patman

e Easily check and sent patches to mailing lists
o U-Boot, kernel and others

e Manages change logs and cover Ietter
e Avoids common user errors ‘ el

Author Simon Glass <53g@chrom1um org=
H . . Date: Thu May 23 20:13:21 2019 -0600
e Little demo if time g

x86: Move fsp ffs.h include to fsp arch.h

This include file is only used for FSP v1. Avoid including it from
fdt support.h so we can use the latter with FSP v2.

Series-to: u-boot

Series-cc: bin

Cover-letter:

x86: Prepare for adding FSP2 code

At present the x86 FSP (Firmware Support Package) code assumes that FSP
version 1 is used. Since this code was added to U-Boot a new version
(FSP2) has been produced by Intel.

In preparation for adding support for FSP2, move the existing code into
a directory that indicates it is used for FSP1.

Google END
Signed-off-by: Simon Glass <sjg@chromium.org>

How might U-Boot look in a few years?

e U-Boot's direction is set by its contributors

e Contributions often come out of the blue

"I wish U-Boot could..."

"My architecture needs to be able to..."
"The xxx implementation is terrible..."
"We need a new way to define...."

e U-Boot exists to solve the booting problem
o As needs evolve, so will U-Boot

O O O O

e But since you asked...

Google

How might U-Boot look in a few years?

e Most custodians will have little automated test farms
o At present not very many (Denx, Consulko, Nvidia, Linaro, Samsung...?)
o Faster release cycle, fewer regressions
e Driver-model migration complete
o Deadlines in 2019 include MMC, USB, BLK, SATA, SPI, PCI, VIDEO
o And perhaps Kconfig (~4500 completed so far)
o Perhaps more driver-model support on the command line?

e More Linux code in U-Boot

e All new code comes with tests
o At present this is true with driver model, filesystems, EFI, but is far from universal

e Reduced image size

Google

Thank you for listening

e U-Boot is an open-source firmware project
e We are a friendly and welcoming bunch!

o (if not, please let me know')
e Go forth and U-Boot

o Please send patches

e My details
o Simon Glass
o to: u-boot@lists.denx.de
o cc: sjg@chromium.org

Google

Links (1)

e Driver model
o https://elinux.org/images/c/c4/Order_at_last_- U-Boot_driver_model_slides %282%29.pdf

e Device tree
o https://elinux.org/Device_Tree_Reference

e Kbuild
o https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
e Kconfig

o https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
e Custodian trees https://qgitlab.denx.de/u-boot/custodians?page=1
e Android verified boot and OP-TEE

o https://www.slideshare.net/GlobalLogicUkraine/uboot-and-android-verified-boot-20
o http://connect.linaro.org.s3.amazonaws.com/hkg18/presentations/hkg18-124.pdf

Google

https://elinux.org/images/c/c4/Order_at_last_-_U-Boot_driver_model_slides_%282%29.pdf
https://elinux.org/Device_Tree_Reference
https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://gitlab.denx.de/u-boot/custodians?page=1
https://www.slideshare.net/GlobalLogicUkraine/uboot-and-android-verified-boot-20
http://connect.linaro.org.s3.amazonaws.com/hkg18/presentations/hkg18-124.pdf

Links (2)

e Verified boot
o https:/lwn.net/Articles/571031/
o https://www.denx.de/wiki/pub/U-Boot/MiniSummitELCE2013/U-Boot_verified_RSA_boot_flow_on
arm_target.pdf
o https://events.static.linuxfound.org/sites/events/files/slides/elce-2014.pdf
o https://www.slideshare.net/GloballLogicUkraine/uboot-and-android-verified-boot-20
o https://ai.google/research/pubs/pub42038

e buildman - 'buildman -H'
e DFU

o http://www.ti.com/lit/an/sprac65a/sprac65a.pdf
o https://www.denx.de/wiki/pub/U-Boot/MiniSummitELCE2013/dfu_elce_u-boot.pdf

Google

https://lwn.net/Articles/571031/
https://www.denx.de/wiki/pub/U-Boot/MiniSummitELCE2013/U-Boot_verified_RSA_boot_flow_on_arm_target.pdf
https://www.denx.de/wiki/pub/U-Boot/MiniSummitELCE2013/U-Boot_verified_RSA_boot_flow_on_arm_target.pdf
https://events.static.linuxfound.org/sites/events/files/slides/elce-2014.pdf
https://www.slideshare.net/GlobalLogicUkraine/uboot-and-android-verified-boot-20
https://ai.google/research/pubs/pub42038
http://www.ti.com/lit/an/sprac65a/sprac65a.pdf
https://www.denx.de/wiki/pub/U-Boot/MiniSummitELCE2013/dfu_elce_u-boot.pdf

Links (3)

e Fastboot
o https://www.denx.de/en/pub/Documents/Presentations/EWC2012_Roeder_Zundel_Fastboot.pdf

e Device-tree overlays
o https://learn.adafruit.com/introduction-to-the-beaglebone-black-device-tree/device-tree-overlays

e Tizen SDWire https://wiki.tizen.org/SDWire
e Tbot https://qithub.com/hsdenx/tbot
e EFI

o https://www.suse.com/media/article/UEFI_on_Top_of_U-Boot.pdf
o http://events17.linuxfoundation.org/sites/events/files/slides/Marrying%20U-Boot%2C%20UEFI1%2
0and%20qrub.pdf

e OP-TEE https://www.op-tee.orqg/

Google

https://www.denx.de/en/pub/Documents/Presentations/EWC2012_Roeder_Zundel_Fastboot.pdf
https://learn.adafruit.com/introduction-to-the-beaglebone-black-device-tree/device-tree-overlays
https://wiki.tizen.org/SDWire
https://github.com/hsdenx/tbot
https://www.suse.com/media/article/UEFI_on_Top_of_U-Boot.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Marrying%20U-Boot%2C%20UEFI%20and%20grub.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/Marrying%20U-Boot%2C%20UEFI%20and%20grub.pdf
https://www.op-tee.org/

