
Practical Filesystem Security
Richard Weinberger

sigma star gmbh



Hello

Richard Weinberger

› Co-founder of sigma star gmbh
› Linux kernel developer and maintainer
› Focus on Linux kernel, low-level components, virtualization, security

Richard Weinberger Practical Filesystem Security



Overview of this Talk

› Practical overview of filesystem security on embedded Linux systems
› Hopefully some guidance for your next project
› By no means a complete guide how to implement a whole security concept
› More a collection of pointers

Richard Weinberger Practical Filesystem Security



Motivation for Filesystem Security tongue-in-cheek

› Care about customer data on the device
› Care about data integrity
› Keep your magic sauce secret
› Have creative licensing
› Pass some certification test

Richard Weinberger Practical Filesystem Security



Know your threat model

› Has attacker hardware access?
› To a running device?
› Able to dump main memory?

› Access to a shell?
› root?
› kernel level?

› Who is the attacker?
› Nosy neighbor?
› Competitor?
› Secret agency?

Richard Weinberger Practical Filesystem Security



Filesystem encryption

› Encrypted…
› Disk?
› Filesystem structures?
› Files?
› Directories?
› File names?
› Out of band data (xattr, …)?

Richard Weinberger Practical Filesystem Security



Filesystem encryption: eCryptfs

› Kernel mode stacked filesystem (no FUSE)
› Encrypts file content and file names on top of another filesystem
› Per directory basis
› No authenticated encryption

Richard Weinberger Practical Filesystem Security



Filesystem encryption: Possible eCryptfs issues

› Performance overhead from stacking
› File name limit

$ stat -f -c "maxlen: %l" /some/ecryptfs
maxlen: 143

$ stat -f -c "maxlen: %l" /other/fs
maxlen: 255

› Who of you checks file length limit before creating a file?

Richard Weinberger Practical Filesystem Security



Filesystem encryption: Possible eCryptfs issues (cont’d)

› On Linux a file name must not contain a nul byte or a slash
› Encrypting a string can give you any result, including nul bytes or slashes
› eCryptfs has to encode cipher text: Increases length

Richard Weinberger Practical Filesystem Security



Filesystem encryption: Using eCryptfs on Yocto

› Add ecryptfs-utils to your rootfs
› Enable CONFIG_ECRYPT_FS in kernel config
› mount ecryptfs before you need it

› initramfs
› PAM
› application level

Richard Weinberger Practical Filesystem Security



Filesystem encryption: dm-crypt

› Block level encryption, uses device mapper
› Works with any block based filesystem
› Used for FDE (Full Disk Encryption)
› Rich cipher suite
› No authenticated encryption

Richard Weinberger Practical Filesystem Security



Filesystem encryption: Using dm-crypt in Yocto

› Add cryptsetup to your rootfs
› Enable CONFIG_DM_CRYPT in kernel config
› Setup dm-crypt before you mount the filesystem

› Happens usually in initramfs

Richard Weinberger Practical Filesystem Security



Filesystem encryption: fscrypt

› File encryption at filesystem level (no stacking)
› Currently supported by ext4, f2fs and ubifs
› File content and file names are encrypted
› No meta data nor out of band data (xattr)!
› Per directory basis (per directory encryption policy)
› Per inode AES key
› No authenticated encryption

Richard Weinberger Practical Filesystem Security



Filesystem encryption: fscrypt (cont’d)

› Primary use case: per user and directory encryption
› Can be abused to encrypt whole filesystem
› Master key provided via keyctl
› Key has to reside in an accessible keyring (e.g. session keyring)
› Has no problem with long file names.

› Quiz question: Why doesn’t it suffer from the same problem as eCryptfs?

Richard Weinberger Practical Filesystem Security



Filesystem encryption: Possible fscrypt issues

› pam_keyinit is your enemy
› File content in page cache, if user A has a key and reads a file, user B can read it

too if access control allows it!
› Consider mount namespaces or strict DAC/ACL

› Without the key nobody can read cipher text
› No backup possible without key!

Richard Weinberger Practical Filesystem Security



Filesystem encryption: Using fscrypt in Yocto

› Add fscryptctl to your rootfs
› Enable CONFIG_FS_ENCRYPTION in your kernel config
› After mounting fileystem make sure either all or selected users have a key

Richard Weinberger Practical Filesystem Security



Filesystem encryption: More considerations

› Full disk encryption is the last resort option
› Think of fine grained encryption, eCryptfs or fscrypt help here

› Do you really need an encrypted /usr and /lib?
› If possible, combine dm-crypt and eCryptfs/fscrypt

Richard Weinberger Practical Filesystem Security



Filesystem encryption: What about data integrity?

› Changed ciphertext usually remains unnoticed
› Just decrypts to garbage
› Attackers can still do evil things
› Think of block swapping or swapping whole (encrypted) files
› e.g. if location of true and login are known their content can get swapped

› No plaintext needed
› Pre-generated filesystem images help attackers

Richard Weinberger Practical Filesystem Security



Filesystem integrity: dm-verity

› Read-only device mapper target
› Useful for read-only block based filesystem such as squashfs or erofs
› Fast, uses a hash tree
› Use cryptsetup/veritysetup on target
› CONFIG_DM_VERITY in kernel config

Richard Weinberger Practical Filesystem Security



Filesystem integrity: dm-integrity

› Read-write device mapper target
› Basically adds an auth tag to every block
› Can be combined with dm-crypt
› Use cryptsetup/veritysetup on target
› CONFIG_DM_INTEGRITY in kernel config
› Non-negligible overhead

Richard Weinberger Practical Filesystem Security



Filesystem integrity: fs-verity

› Integrity for selected files
› Read-only!
› Supported on ext4, f2fs and btrfs
› Use fsverity-utils on target
› Enable CONFIG_FS_VERITY in kernel config

Richard Weinberger Practical Filesystem Security



Filesystem integrity: authenticated ubifs

› Full authentication support and read-write
› Works because ubifs is strictly copy-on-write
› Can be combined with fscrypt
› Be aware: Featre is rather new

Richard Weinberger Practical Filesystem Security



Wait, what about generating images?

› Most mechanisms don’t have tooling to generate encrypted/authed images
› We don’t recommend it
› Installer approach:

› rootfs as tarball
› Generate an installer (IOW a livecd)
› The installer will setup everything, plus locking down the device

Richard Weinberger Practical Filesystem Security



Filesystem encryption: Using fscrypt with mkfs.ubifs

› mkfs.ubifs can generate a pre-encrypted ubifs filesystem, whole filesystem same
policy

› mkfs.ubifs -r rootfs/ -m 2048 -e 126976 -c 1024 -o
ubifs_crypt.img -b ddeeaaddbbeeeeff -K ubifs_masterkey.bin

› ddeeaaddbbeeeeff is the key descriptor, see fscryptctl

Richard Weinberger Practical Filesystem Security



Filesystem integrity: Using ubifs authentication with mkfs.ubifs

› Just like for fscrypt
› We use the signing key from the kernel build
› mkfs.ubifs --hash-algo=sha256 --auth-cert=signing_key.x509 -r

rootfs -e 126976 -o ubifs_auth.img -c 1024 -m 2048
--auth-key=signing_key.pem

Richard Weinberger Practical Filesystem Security



The “key” to success

› No human interaction wanted (e.g. mount must not ask for passwords)
› Key material must be stored in device itself to unlock device
› Attacker must not extract key
› Major challenge
› No way without support from hardware

Richard Weinberger Practical Filesystem Security



The “key” to success: Naive approach

› Derive key from hardware properties
› CPU ID, MAC from network card, etc…
› Security by obscurity, IMHO
› More often used than you’d assume

Richard Weinberger Practical Filesystem Security



The “key” to success: External Secure Element (TPM, etc.)

› Can store key material in a secure way
› Problem: Doing all crypto on the secure element is slow
› To utilize CPU, key needs get transferred into main memory
› Attacker can read the key while it is transferred
› Common attack: Bitlocker TPM sniffing

Richard Weinberger Practical Filesystem Security



The “key” to success: Internal Secure Element (i.MX CAAM, etc.)

› Some SoC have a built in secure element
› e.g. i.MX CAAM or DCP
› In short: SoC can do AES with a fused key
› Typical use case: Store encrypted FDE key on distrusted location
› Problem: Fails if attacker can execute code, you need verified boot

› Applies to the external secure element case too

Richard Weinberger Practical Filesystem Security



The “key” to success: Key not in main memory

› Common requirement: KEY MUST NO RESIDE IN RAM!!!11elf
› Technically possible if you have a secure element
› Keep in mind:

› Some mechanisms need the key in plaintext and do manual key derivation,
e.g. fscrypt

› Linux’s page cache is not your friend
› Consider RAM encryption too
› Know your threat model!

Richard Weinberger Practical Filesystem Security



A few words on performance

› Crypto on SoC can be slow
› Crypto accelerators are not always faster

› Filesystem encryption/auth is not their use-case
› Consider using AES-128 instead of AES-256
› When using dm-crypt, consider no-read-workqueue and no-write-workqueue
› Do your own benchmarks!

Richard Weinberger Practical Filesystem Security



Summary

› Know your threat model
› There is no one-fits-all solution
› Know your threat model
› Full disk encryption is the last resort
› Know your threat model
› Storing the key material is the hard part
› Know your threat model

Richard Weinberger Practical Filesystem Security



Further reading

› https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-
crypt.html

› https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html
› https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-

integrity.html
› https://www.kernel.org/doc/html/latest/filesystems/fscrypt.html
› https://www.kernel.org/doc/html/latest/filesystems/fsverity.html
› https://www.kernel.org/doc/html/latest/filesystems/ubifs-authentication.html
› https://www.spinics.net/lists/linux-mtd/msg08477.html
› https://www.jakoblell.com/blog/2013/12/22/practical-malleability-attack-against-

cbc-encrypted-luks-partitions/
› https://pulsesecurity.co.nz/articles/TPM-sniffing
› https://blog.cloudflare.com/speeding-up-linux-disk-encryption/

Richard Weinberger Practical Filesystem Security



FIN

Thank you!
Questions, Comments?

David Gstir
david@sigma-star.at

Richard Weinberger
richard@sigma-star.at

Richard Weinberger Practical Filesystem Security


