sigma star

Practical Filesystem Security

Richard Weinberger

sigma star gmbh

Hello

Richard Weinberger

» Co-founder of sigma star gmbh
» Linux kernel developer and maintainer
» Focus on Linux kernel, low-level components, virtualization, security

Richard Weinberger Practical Filesystem Security

Overview of this Talk

» Practical overview of filesystem security on embedded Linux systems

» Hopefully some guidance for your next project

» By no means a complete guide how to implement a whole security concept
» More a collection of pointers

Richard Weinberger Practical Filesystem Security

Motivation for Filesystem Security tongue-in-cheek

» Care about customer data on the device
» Care about data integrity

» Keep your magic sauce secret

» Have creative licensing

» Pass some certification test

Richard Weinberger Practical Filesystem Security

Know your threat model

» Has attacker hardware access?
» To a running device?
» Able to dump main memory?
» Access to a shell?
y root?
y kernel level?
» Who is the attacker?
» Nosy neighbor?
» Competitor?
» Secret agency?

Richard Weinberger Practical Filesystem Security

Filesystem encryption

» Encrypted..
» Disk?
» Filesystem structures?
» Files?
» Directories?
» File names?
» Out of band data (xattr, ..)?

Richard Weinberger Practical Filesystem Security

Filesystem encryption: eCryptfs

Kernel mode stacked filesystem (no FUSE)

Encrypts file content and file names on top of another filesystem
Per directory basis

No authenticated encryption

~ ~ o~ o~

Richard Weinberger Practical Filesystem Security

Filesystem encryption: Possible eCryptfs issues

» Performance overhead from stacking
» File name limit

$ stat -f -c "maxlen: %1" /some/ecryptfs
maxlen: 143

$ stat -f -c "maxlen: %1" /other/fs
maxlen: 255

» Who of you checks file length limit before creating a file?

Richard Weinberger Practical Filesystem Security

Filesystem encryption: Possible eCryptfs issues (cont'd)

» On Linux a file name must not contain a nul byte or a slash
» Encrypting a string can give you any result, including nul bytes or slashes
» eCryptfs has to encode cipher text: Increases length

Richard Weinberger Practical Filesystem Security

Filesystem encryption: Using eCryptfs on Yocto

» Add ecryptfs-utils to your rootfs
» Enable CONFIG_ECRYPT_FS in kernel config

» mount ecryptfs before you need it
y initramfs
y PAM
y application level

Richard Weinberger Practical Filesystem Security

Filesystem encryption: dm-crypt

Block level encryption, uses device mapper
Works with any block based filesystem
Used for FDE (Full Disk Encryption)

Rich cipher suite

No authenticated encryption

~ ~ o~ o~ o~

Richard Weinberger Practical Filesystem Security

Filesystem encryption: Using dm-crypt in Yocto

» Add cryptsetup to your rootfs
» Enable CONFIG_DM_CRYPT in kernel config

» Setup dm-crypt before you mount the filesystem
» Happens usually in initramfs

Richard Weinberger Practical Filesystem Security

Filesystem encryption: fscrypt

~ ~ v~ v~ ~ ~ ~

File encryption at filesystem level (no stacking)
Currently supported by ext4, f2fs and ubifs

File content and file names are encrypted

No meta data nor out of band data (xattr)!

Per directory basis (per directory encryption policy)
Per inode AES key

No authenticated encryption

Richard Weinberger Practical Filesystem Security

Filesystem encryption: fscrypt (cont'd)

Primary use case: per user and directory encryption

Can be abused to encrypt whole filesystem

Master key provided via keyctl

Key has to reside in an accessible keyring (e.g. session keyring)

Has no problem with long file names.
» Quiz question: Why doesn't it suffer from the same problem as eCryptfs?

~ ~ ~ ~ ~

Richard Weinberger Practical Filesystem Security

Filesystem encryption: Possible fscrypt issues

» pam_keyinit is your enemy
» File content in page cache, if user A has a key and reads a file, user B can read it
too if access control allows it!
» Consider mount namespaces or strict DAC/ACL

» Without the key nobody can read cipher text
» No backup possible without key!

Richard Weinberger Practical Filesystem Security

Filesystem encryption: Using fscrypt in Yocto

» Add fscryptctl to your rootfs
» Enable CONFIG_FS_ENCRYPTION in your kernel config
» After mounting fileystem make sure either all or selected users have a key

Richard Weinberger Practical Filesystem Security

Filesystem encryption: More considerations

» Full disk encryption is the last resort option

» Think of fine grained encryption, eCryptfs or fscrypt help here
» Do you really need an encrypted /usr and /lib?
» If possible, combine dm-crypt and eCryptfs/fscrypt

Richard Weinberger Practical Filesystem Security

Filesystem encryption: What about data integrity?

Changed ciphertext usually remains unnoticed

Just decrypts to garbage

Attackers can still do evil things

Think of block swapping or swapping whole (encrypted) files

e.g. if location of true and login are known their content can get swapped
» No plaintext needed

» Pre-generated filesystem images help attackers

~ v ~ o~ o~

Richard Weinberger Practical Filesystem Security

Filesystem integrity: dm-verity

Read-only device mapper target

Useful for read-only block based filesystem such as squashfs or erofs
Fast, uses a hash tree

Use cryptsetup/veritysetup on target

CONFIG_DM_VERITY in kernel config

~ v~ o~ o~ o~

Richard Weinberger Practical Filesystem Security

Filesystem integrity: dm-integrity

~ v v o~ o~ o~

Read-write device mapper target
Basically adds an auth tag to every block
Can be combined with dm-crypt

Use cryptsetup/veritysetup on target
CONFIG_DM_INTEGRITY in kernel config
Non-negligible overhead

Richard Weinberger Practical Filesystem Security

Filesystem integrity: fs-verity

» Integrity for selected files

» Read-only!

» Supported on ext4, f2fs and btrfs

» Use fsverity-utils on target

» Enable CONFIG_FS_VERITY in kernel config

Richard Weinberger Practical Filesystem Security

Filesystem integrity: authenticated ubifs

Full authentication support and read-write
Works because ubifs is strictly copy-on-write
Can be combined with fscrypt

Be aware: Featre is rather new

~ ~ o~ o~

Richard Weinberger Practical Filesystem Security

Wait, what about generating images?

» Most mechanisms don't have tooling to generate encrypted/authed images
» We don’t recommend it

» Installer approach:
» rootfs as tarball
» Generate an installer (IOW a livecd)
» The installer will setup everything, plus locking down the device

Richard Weinberger Practical Filesystem Security

Filesystem encryption: Using fscrypt with mkfs.ubifs

» mkfs.ubifs can generate a pre-encrypted ubifs filesystem, whole filesystem same
policy

» mkfs.ubifs -r rootfs/ -m 2048 -e 126976 -c 1024 -o
ubifs_crypt.img -b ddeeaaddbbeeceeff -K ubifs_masterkey.bin

» ddeeaaddbbeeeeff is the key descriptor, see fscryptctl

Richard Weinberger Practical Filesystem Security

Filesystem integrity: Using ubifs authentication with mkfs.ubifs

» Just like for fscrypt

» We use the signing key from the kernel build

» mkfs.ubifs --hash-algo=sha256 --auth-cert=signing_key.x509 -r
rootfs -e 126976 -o ubifs_auth.img -c 1024 -m 2048
--auth-key=signing_key.pem

Richard Weinberger Practical Filesystem Security

The “key” to success

» No human interaction wanted (e.g. mount must not ask for passwords)
» Key material must be stored in device itself to unlock device

» Attacker must not extract key

» Major challenge

» No way without support from hardware

Richard Weinberger Practical Filesystem Security

The “key” to success: Naive approach

Derive key from hardware properties
CPU ID, MAC from network card, etc...
Security by obscurity, IMHO

More often used than you'd assume

~ ~ o~ o~

Richard Weinberger Practical Filesystem Security

The "key" to success: External Secure Element (TPM, etc.)

Can store key material in a secure way

Problem: Doing all crypto on the secure element is slow

To utilize CPU, key needs get transferred into main memory
Attacker can read the key while it is transferred

Common attack: Bitlocker TPM sniffing

~ v~ o~ o~ o~

Richard Weinberger Practical Filesystem Security

The "key" to success: Internal Secure Element (i.MX CAAM, etc.)

Some SoC have a built in secure element

e.g. i.MX CAAM or DCP

In short: SoC can do AES with a fused key

Typical use case: Store encrypted FDE key on distrusted location

Problem: Fails if attacker can execute code, you need verified boot
» Applies to the external secure element case too

~ ~ ~ ~ o~

Richard Weinberger Practical Filesystem Security

The “key” to success: Key not in main memory

» Common requirement: KEY MUST NO RESIDE IN RAM!!111elf
» Technically possible if you have a secure element
» Keep in mind:
» Some mechanisms need the key in plaintext and do manual key derivation,
e.g. fscrypt
» Linux’s page cache is not your friend
» Consider RAM encryption too
» Know your threat model!

Richard Weinberger Practical Filesystem Security

A few words on performance

» Crypto on SoC can be slow

» Crypto accelerators are not always faster
» Filesystem encryption/auth is not their use-case

» Consider using AES-128 instead of AES-256
> When using dm-crypt, consider no-read-workqueue and no-write-workqueue
» Do your own benchmarks!

Richard Weinberger Practical Filesystem Security

Summary

» Know your threat model

» There is no one-fits-all solution

» Know your threat model

» Full disk encryption is the last resort

» Know your threat model

» Storing the key material is the hard part
» Know your threat model

Richard Weinberger Practical Filesystem Security

Further reading

~ ~ ~ ~ o~

https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-
crypt.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-
integrity.html

https://www.kernel.org/doc/html/latest/filesystems /fscrypt.html
https://www.kernel.org/doc/html/latest/filesystems /fsverity.html
https://www.kernel.org/doc/html/latest/filesystems/ubifs-authentication.html
https://www.spinics.net/lists/linux-mtd /msg08477.html
https://www.jakoblell.com/blog/2013/12/22 /practical-malleability-attack-against-
cbc-encrypted-luks-partitions/

https://pulsesecurity.co.nz/articles/ TPM-sniffing

https://blog.cloudflare.com /speeding-up-linux-disk-encryption/

Richard Weinberger Practical Filesystem Security

FIN

Thank you!

Questions, Comments?

David Gstir
david@sigma-star.at

Richard Weinberger
richard@sigma-star.at

Richard Weinberger Practical Filesystem Security

