
Interrupt Entry Latency Behavior
Analysis of Linux 2.4 vs 2.6

SangBae Lee

Software Laboratories (CTO)

Samsung Electronics Co.Ltd

2 / 7

Preface (1/2)Preface (1/2)

??????

0

20

40

60

80

100

120

140

160

2002 2003 2004 2005 2006 2007

Worldwide Shipments of Embedded Linux Operating Systems
Others

Information Automation

Retail Automation

Building/Home
Automation
Medical

Automotive

Office Automation

Military/Aerospace

Industrial Automation

Telecom/Datacom

Consumer Electronics

3 / 7

Preface (2/2)Preface (2/2)

What is Real-Time?
– “A real time system is one in which the correctness of the computations not only

depends upon the logical correctness of the computation but also upon the time at
which the result is produced. If the timing constraints of the system are not met,
system failure is said to have occurred.”

- Donald Gillies

– “Real time in operating systems:
The ability of the operating system to provide a required level of service in a bounded
response time.”

- POSIX Standard 1003.1

What is Real-Time System ?

– Real-time System이란, 어떤 event가 발생했을 때, 이것을 어떤 정해진 시간(Deadline) 이
내에 처리하는 것을 보장하는 system이라고 할 수 있다. 즉, event에 대한 반응성이 빠르고,
중요한 event가 덜 중요한 event보다 먼저 수행되며, event를 놓치는 일이 결코 일어나서는
안 되는 system을 말한다. 이러한 것을 완벽하게 보장(놓치는 경우 error)하는 system을
hard-real-time이라고 하고, event를 가끔 놓쳐도 크게 문제되지 않는(error로 취급되지 않
음) system을 soft-real-time이라고 한다).

4 / 7

MV Linux Kernel Mode & Real Time 특성MV Linux Kernel Mode & Real Time 특성

MontaVista Kernel Configuration for Real Time Feature

General Concept of Real-Time
– H/W (Device)의 IRQ(interrupt) Response Time

– Task(Thread/Process) Preemption Time
• Scheduling time, Context Switching Time

– Task(Thread/Process) Priority & priority inversion

– Fast IPC (Inter Process/Task Communication)

– System Call Response Time & System Call Processing Behavior

MV Support
Preemption Mode Target System .config option

Pro 3.1 Pro 4.0

No Forced Preemption Server CONFIG_PREEMPT_NONE O O

Voluntary Kernel Preemption Desktop CONFIG_PREEMPT_VOLUNTARY X O

Preemptible Kernel Low Latency Desktop CONFIG_PREEMPT_DESKTOP O O

Complete Preemption Real Time CONFIG_PREEMPT_RT X O

5 / 7

TerminologyTerminology

Hard deadline requirement:
– missing the deadline is considered an error.

Hard real-time system:
– system with hard real-time requirements.

Interrupt latency:
– time passed between interrupt occurrence and activation of interrupt handler.

Interrupt masking:
– Making certain interrupts invisible to the software.

Interrupt response time (worst-case):
– (worst-case) time passed between interrupt occurrence and either completion of interrupt service

routine (ISR) or wake up of dependent task.

Jitter – absolute:
– deviation of the occurrence of an event (e.g. completion of frame) from expected occurrence.

Jitter – relative:
– deviation of the interval between two successive occurrences of an event (e.g. completion of frame)

from expected interval.

6 / 7

TerminologyTerminology
Preemption:

– a running thread or process can be temporarily suspended. The state of the thread or process (including
e.g., program counter, and register values) is saved. Until the thread is resumed, it remains runnable (active,
ready). When the process or thread is later resumed, the saved state is restored.

Real-time requirement:
– a requirement on the completion time of a response, generally measured relative to the event that triggered

the response.

Real-time system:
– system with one or more real-time requirements.

Response time (worst-case):
– (worst-case) time passed between event occurrence and completion of the response to that event. The

event may be an interrupt. The response typically involves an interrupt handler and one or more
synchronized tasks.

Soft deadline:
– missing deadlines is sometimes acceptable. Compared to hard deadlines, where there is no reason to

consider the value of a late result, the value of a late result for a soft deadline is of interest. The value of the
result may, for instance, decrease linearly after the deadline.

Soft real-time requirement:
– soft deadline, or average-case response time requirement. Note that hard and soft real-time requirements

are orthogonal to the temporal granularity that is required. Meeting a soft requirement in the microsecond
domain may be more difficult than meeting a hard requirement in the milliseconds domain.

Soft real-time system:
– system with soft real-time requirements

7 / 7

OSK5912 OSK5912

Recently, most of embedded processor have 32~200 interrupt sources
(OMAP5912 - ARM926) in one core

Is all interrupt request from devices handled correctly?

8 / 7

Interrupt Entry LatencyInterrupt Entry Latency

Interrupt Entry Latency : from IRQ request of Device to IRQ entry of kernel

time
IRQ

Request

IRQ
Entry

Ⓐ Interrupt Entry Latency Ⓑ Interrupt Processing
Latency (ISR)

IRQ
Exit

But, kernel don’t know the exact time

that any device requests specific IRQ request
So, we cannot measure interrupt Entry Latency

Without additional hardware (ex. Jtag or oscilloscope)

9 / 7

Using OS Timer to know the time of Device IRQ requestUsing OS Timer to know the time of Device IRQ request

There is only one device which we can measure interrupt entry latency :
OS Timer (osk5912 : Timer2)

Usually, OS timer use down-counter (but, on MIPS, it is up-counter)

Down-counter is cleared from user-defined values per every period

And, OS timer has a lowest priority than other devices.

so, from OS timer behavior, we can expect an Interrupt behavior of any
system (interrupt entry latency behavior of other devices)

We can expect System behavior
using OS Timer interrupt latency statistically

10 / 7

How to measure Interrupt Entry LatencyHow to measure Interrupt Entry Latency

OMAP5912 Example
– OS Timer : 6MHz clock 100Hz 0xEA60 (down-counter initial value)

• T(A) = (T0-T1) * (10000ns / 0xEA60)

Interrupt Latency : IRQ Entry Time : T(A) Ⓐ

• T(B) = (T1-T2) * (10000ns / 0xEA60)

Interrupt Handler Duration : IRQ Handler Duration Time : T(B) Ⓑ

t
10ms

10ms

HW
IRQ

(Timer2)

HW
IRQ

(Timer2)

HW
IRQ

(Timer2)

T2 IRQ
Entry

Ⓐ Ⓑ

T2 IRQ
Exit

T0 : 0xEA60

T1:0xEA00 0x0

EA60T2:0xE900

11 / 7

Delayed handling example of OS timer IRQDelayed handling example of OS timer IRQ

Because of higher priority request (ethernet interrupt reqeust), OS timer
interrupt was delayed

10ms

t
HW
IRQ

(Timer2)

HW
IRQ

(Timer2)

HW
IRQ

(Timer2)

T2 IRQ
Entry

T2 IRQ
Exit

Ⓐ Ⓑ

t

10ms 10ms

HW
IRQ

(Timer2)

HW
IRQ

(Timer2)

HW
IRQ

(Timer2)

Eth
IRQ

Entry

T2 IRQ
Entry

Ⓐ Ⓑ

Eth
IRQ
Exit

T2 IRQ
Exit

Without
higher priority

With
higher priority

10ms

12 / 7

Practical Test EnvironmentsPractical Test Environments

Target : OSK5912 (192Mhz)

– Original montavista patch

– Using NFS root filesystem

– Stress tool : netperf, SYS_syscall(getpid)

– Measurement tool : LTT (Linux Trace Toolkit)

Kernel Configuration No stress Ethernet IRQ Stress IPC Stress
System Call

Stress

Server

Desktop O O O O

Low latency Desktop O O O O

Real time O O O O

Preemption ON O O X* X*

Preemption OFF O O X* X*

MV pro 3.1
(2.4.20)

O O O O

MV pro 4.0
(2.6.10)

X* : Test중 LTT Data Lost로 인해 분석 불가

13 / 7

Practical Test : using netperfPractical Test : using netperf

GPIO INT(IRQ 14) will be requested heavily by Netperf

IRQ 30
10ms

Ethernet
IRQ 14

14 / 7

Interrupt Entry Latency Measurement using LTTInterrupt Entry Latency Measurement using LTT

A comparison of Linux 2.4 vs 2.6 Interrupt latency
– Interrupt entry latency of Linux 2.6 is worse than Linux 2.4

Linux 2.6.10Linux 2.6.10 Linux 2.4.20Linux 2.4.20

What makes the performance difference
between Linux 2.6 and 2.4 ?

Linux 2.4 is at least 2-times faster than Linux2.6.

15 / 7

Detailed analysis of IRQ Entry Latency PatternDetailed analysis of IRQ Entry Latency Pattern

16 / 7

Summary of LTT test resultSummary of LTT test result

Kernel
Configuration

Best Case 95% samples Worst Case 비고

Server

Desktop < 30us <250us <500us

Low latency
Desktop

< 30us <320us <700us

Real time < 30us <200us <400us

Preemption
ON

< 10us <15us <40us

Preemption
OFF

< 10us <15us <40us

MV pro 3.1
(2.4.20)

< 30us <200us <350us

MV pro 4.0
(2.6.10)

17 / 7

Source Ananlysis(1/4) :Linux 2.4 vs 2.6Source Ananlysis(1/4) :Linux 2.4 vs 2.6

18 / 7

Source Analysis (2/4) : detailsSource Analysis (2/4) : details

19 / 7

Source analysis(3/4) : Linux2.6 asm_do_IRQ()Source analysis(3/4) : Linux2.6 asm_do_IRQ()

20 / 7

Source Analysis(4/4) : Linux 2.4 asm_do_IRQ()Source Analysis(4/4) : Linux 2.4 asm_do_IRQ()

21 / 7

Source Analysis result : no differenceSource Analysis result : no difference

22 / 7

What makes the difference between Linux2.4 and 2.6What makes the difference between Linux2.4 and 2.6

We decided to verify the overhead of LTT (measurement tool)

– 2.4 : /dev/trace

– 2.6 : /mnt/relayfs

There is a big difference to save traced data

23 / 7

LTT Overhead AnalysisLTT Overhead Analysis

We need another way
OK, let’s make a simple light-weight tracer

(Zoom-in Tracer)

24 / 7

ZI(Zoom In) Tracer ZI(Zoom In) Tracer

Arch/arm/kernel/irq.c

asmlinkage void asm_do_IRQ()
{

ZI_IRQ_ENTRY(irq);

ZI_IRQ_EXIT(irq);
}

include/linux/zi_trace.h

#define ZI_IRQ_ENTRY(tracing_point) ₩
zi_register_event(((ZI_GROUP_IRQ << 24) | ZI_TYPE_IRQ_ENT), ₩

tracing_point);
#define ZI_IRQ_EXIT(tracing_point) ₩

zi_register_event(((ZI_GROUP_IRQ << 24) | ZI_TYPE_IRQ_EXIT), ₩
tracing_point);

Kernel/zi_trace.c

int zi_register_event(unsigned int flag, int tracing_point)
{
unsigned int group_id;
struct irq_event_desc *bufptr;
int event_id;
struct timeval tv;

if(zi_tracer_running != 0xF628)
return -EBUSY;

/* check if duration is expired or not */
do_gettimeofday(&tv);
if(((tv.tv_sec - trace_start.tv_sec) >= zi_trace_duration) ₩

&& ((tv.tv_usec - trace_start.tv_usec) > 0)) { /* stop tracer */
zi_tracer_running = 0;
printk(" trace done. duration is expired (%d)₩n", zi_trace_duration);
return 0;

}

………………..

Irq_buffer[]

proc interface

/proc/zi/rawdata
/proc/zi/entry_time
/proc/zi/control
/proc/zi/duration

25 / 7

A Comparison - with LTTA Comparison - with LTT

Linux 2.4.20-LTTLinux 2.4.20-LTT Linux 2.6.10-LTTLinux 2.6.10-LTT

26 / 7

A comparison –with ZIA comparison –with ZI

minimum Interrupt Entry Latency is 3us~30us

Linux 2.4.20-ZILinux 2.4.20-ZI Linux 2.6.10-ZILinux 2.6.10-ZI

Good !!
There is no big difference between Linux 2.6 and Linux2.4

27 / 7

Real Target Analysis (DTV)Real Target Analysis (DTV)

DTV System Interrupt Entry Latency

– X240-MIPS (ATI)

• CPU frequency 264.06 MHz

• Calibrating delay loop... 263.78 BogoMIPS

< after basic kernel booting>

<after full application booting>

28 / 7

Q & A

Thank you

	
	Preface (1/2)
	Preface (2/2)
	MV Linux Kernel Mode & Real Time 특성
	Terminology
	Terminology
	OSK5912
	Interrupt Entry Latency
	Using OS Timer to know the time of Device IRQ request
	How to measure Interrupt Entry Latency
	Delayed handling example of OS timer IRQ
	Practical Test Environments
	Practical Test : using netperf
	Interrupt Entry Latency Measurement using LTT
	Detailed analysis of IRQ Entry Latency Pattern
	Summary of LTT test result
	Source Ananlysis(1/4) :Linux 2.4 vs 2.6
	Source Analysis (2/4) : details
	Source analysis(3/4) : Linux2.6 asm_do_IRQ()
	Source Analysis(4/4) : Linux 2.4 asm_do_IRQ()
	Source Analysis result : no difference
	What makes the difference between Linux2.4 and 2.6
	LTT Overhead Analysis
	ZI(Zoom In) Tracer
	A Comparison - with LTT
	A comparison –with ZI
	Real Target Analysis (DTV)

