
tpm2-software.github.io

Enabling the TPM2.0 Ecosystem in Linux

Andreas Fuchs
<andreas.fuchs@sit.fraunhofer.de>

(filling in for Peter Huewe)

mailto:andreas.fuchs@sit.fraunhofer.de

2

Who am I ?

● 13 year on/off TPMs
● Fraunhofer SIT: Trustworthy Platforms
● TCG-member: TPM Software Stack WG
● Maintainer

– tpm2-tss: The libraries
– tpm2-tss-engine: The OpenSSL engine
– tpm2-totp: Computer-to-user attestation

(mjg’s tpm-totp reimplemented for 2.0)

3

Putting TPMs into things

4

Agenda

● Introducing TPMs
● Introducing the TSS

● Existing TSS software
● What’s new ?

● Community

5

Introduction to TPMs

● Trusted Platform Module (TPM) 2.0
– Smartcard-like capabilities but soldered in
– Remote Attestation capabilities
– As separate chip (LPC, SPI, I²C)
– In Southbridge / Firmware
– Via TEEs/TrustZone, etc
– Thanks to Windows-Logos in every PC

● CPU
– OS, TSS 2.0, applications

6

Introduction to TPMs

● Getting started
– Any PC with a Windows Logo

ACPI based discovery
– A Raspberry-PI with a TPM daughterboard

On Raspbian:
 /boot/config.txt:
 dtparam=spi=on
 dtoverlay=tpm-slb9670

● tpm2-tss/INSTALL.md

7

Agenda

● Introducing TPMs
● Introducing the TSS

● Existing TSS software
● What’s new ?

● Community

8

The TPM Software Stack 2.0

● Kernel exposes /dev/tpm0 with byte
buffers

● TCG specifications:
– TPM spec for functionality
– TSS spec for software API

● tpm2-tss is an implementation
● APIs for application integration
● Support in other modules and middle

wares for seamless integration

9

The TSS APIs

System API (sys)
• 1:1 to TPM2 cmds
• Cmd / Rsp

serialization
• No file I/O
• No crypto
• No heap / malloc

Enhanced SYS (esys)
• Automate crypto for

HMAC / encrypted
sessions

• Dynamic TCTI
loading

• Memory allocations
• No file I/O

Feature API (FAPI)
• Spec in draft form
• No custom typedefs
• JSON interfaces
• Provides Policy

language
• Provides keystore
• Sec/func separation

TPM Access Broker and Resource Manager (TAB/RM)
• Abstract Storage Limitations
• No crypto

 Power management

TPM Command Transmission Interface (tss2-tcti)
 Abstract command / response mechanism,
 Decouple APIs from command transport / IPC

• No crypto, heap, file I/O
• Dynamic loading / dlopen API

TPM Device Driver
• Device Interface (CRB / polling)
• Pre-boot log handoff

U
s
e
r

S
p
a
c
e

U
s
e
r

S
p
a
c
e

K
e
r
n
e
l

K
e
r
n
e
l

10

Projects overview

tpm2-
tss

tpm2-tools
Commandline Tools

tpm2-abrmd
Access Broker/ Ressource

Manager

tpm2-tss-engine
OpenSSL Engine

tpm2-totp
One Time Pads

tpm2-pkcs11 *
PKCS#11 Provider

Keylime
Remote Attestation

Cryptsetup
LUKS *

Disk-Encryption

OpenConnect

VPN

StrongSwan
IPSec

tpm2-pytss *
Python Bindings

tpm2-software.github.io

11

The tpm2-software core projects

● tpm2-tss (core library)
– Autotools, pkg-config, deps: libcrypto OR libgcrypt

coming deps: libcurl, libjson-c
● tpm2-abrmd (user space RM)

– Autotools, pkg-config, deps: libdbus, libglib
● tpm2-tools (CLI tools)

– Autotools, pkg-config, deps: libcrypto, libcurl
● tpm2-pytss (python bindings)
● tpm2-tss-engine (OpenSSL-engine)
● tpm2-totp (PC-to-human authentication)

12

People and community

● Maintainers:
– Bill, Imran, Jonas, Jürgen, John, Phil, Peter,

Tadeusz, and me
● >100 contributors
● CI with ~80% coverage targets,

scanbuild, coverity, CII best practice,
lgtm, …

● Building multi-distro CI using docker

13

Tags tags tags

● Tested in many
ways

● Packaged for
many distros

14

Agenda

● Introducing TPMs
● Introducing the TSS

● Existing TSS software
● What’s new ?

● Community

15

Existing TSS things

● Mostly anything runs off of
Esys_*()

● Povides 1-to-1 mapping of
TPM functionality

● Automates
– marshalling / unmarshaling
– Object meta-data handling
– session encryption and authentication
– memory allocation
– TPM detection sequence

(tpm2-abrmd, /dev/tpmrm0, /dev/tpm0, simulator)
● tpm2-tools >= 4.0 use Esys
● tpm2-pytss uses Esys

Device Driver

Application

tss2-sys

libtss2-tcti-device

Esys_XXX

TPM2

tss2-mu

tss2-esyslib*crypt*

16

UC: Shielded key storage and usage

● Keys in RAM are always dangerous
– “Heartbleed”

● Keys on Disk are always dangerous
– You can protect them with user passwords

but they can be bruteforced
– Servers have no unlock step
– Embedded devices have no unlock step

● So how do you prevent ID-cloning ?

→ Use TPM

17

UC: Shielded key storage and usage

● How do you use the TPM ?

→ easy: tpm2-tss-engine

Application

OpenSSL

Peer

TPM

Engine

SSL/TLS

TPM2-TSS

18

UC: Disk encryption

● “Bitlocker for Linux”
– Binding the disk to the machine
– Short PIN instead of long passwords
– No more dictionary attacks

● Even more utility in other areas
– Data Center: People stealing HDDs from the rack
– Embedded device once more
– Binding to BIOS integrity status

(local attestation)

19

UC: Disk encryption

● cryptsetup(-tpm) / LUKS2
– Rearchitecting with Milan
– Making cryptsetup ”module-aware”

{
 "keyslots": {
 "1": {
 "type": "tpm2",
 "key_size": 32,
 "area": {
 "type": "tpm2nv",
 "nvindex": 29294593,
 "pcrselection": 0,
 "pcrbanks": 1,
 "noda": true
 },

20

UC: (VPN) user authentication

● UserName + Password ?

→ Machine + UserPassword !

Adding security to network access
● OpenConnect (David Woodhouse)

– Reuse (copy) of tpm2-tss-engine
● Strongswan

– Implements Attestation and RIMs as well
● OpenVPN via tpm2-tss-engine ?
● Missing WireGuard, Tinc, ...

21

Agenda

● Introducing TPMs
● Introducing the TSS

● Existing TSS software
● What’s new ?

● Community

22

What’s new ? libtss2-fapi.so !

● TCG specifications
– TSS 2.0 Feature API spec
– TSS 2.0 JSON and Policy Data spec

● Features
– No TPM-specific data structures:

Using JSON for all in-/output
– Decouple functional design from security design:

Using cryptographic profiles
– Add a keystore:

Store TPM’s blobs and meta data on disk
– Add a policy language:

Describe policies in JSON and automatically evaluate policies upon
use

● PRs with >25k LoC on tpm2-tss, -tools, -pkcs11

23

API Code comparison (Signing)

24

Policy Comparison

● ESYS:

TPML_PCR_SELECTION pcrSelection = {
 .count = 1, .pcrSelections = {
 { .hash = TPM2_ALG_SHA1,
 .sizeofSelect = 3,
 .pcrSelect = {00, 00, 01} } } };

TPM2B_DIGEST pcr_digest_zero = {
 .size = 20, .buffer = {0x67, 0x68, 0x03,
0x3e, 0x21, 0x64, 0x68, 0x24, 0x7b, 0xd0,
0x31, 0xa0, 0xa2, 0xd9, 0x87, 0x6d, 0x79,
0x81, 0x8f, 0x8f}};

r = Esys_StartAuthSession(esys_context,
 ESYS_TR_NONE, ESYS_TR_NONE,
 ESYS_TR_NONE, ESYS_TR_NONE,
 ESYS_TR_NONE, &nonceCallerTrial,
 TPM2_SE_POLICY, &symmetric,
 TPM2_ALG_SHA1, &session);

r = Esys_PolicyPCR(esys_context, session,
 ESYS_TR_NONE, ESYS_TR_NONE,
 ESYS_TR_NONE, &pcr_digest_zero,
 &pcrSelection);

● FAPI:

{
 "description":"PCR 16 value",
 "policy":[
 {
 "type":"POLICYPCR",
 "pcrs":[
 {
 "pcr":16,
 "hashAlg":"SHA1",
 " digest":"00...00"
 }
]
 }
]
}

25

UC: (General) user authentication

● Typical SmartCard workflow (PKCS11)
– Proof of possession (of smartcard)
– Proof of knowledge (of PIN not password)
– More secure and convenient than passwords

→ tpm2-pkcs11 (Virtual SmartCard)
– Proof of possession (of TPM-holding device)
– Proof of knowledge
– Fully compatible

● Heavy rework to run off of FAPI

26

Agenda

● Introducing TPMs
● Introducing the TSS

● Existing TSS software
● What’s new ?

● Community

27

Community

28

What’s missing ?

● Attestation
– Some support by FAPI; protocol bindings
– Reference value descriptions

● More core system integration
– 802.1X: NetworkManager, systemd-networkd
– User keyrings: gnome-keyring, kwallet
– VPNs: Wireguard, Tinc, …
– Signing: GnuPG
– WebCrypto / WebAuthn (Firefox, Chrome, ...)
– ……

● 2nd maintainer for tpm2-tss-engine :-)

29

Questions ?

https://tpm2-software.github.io

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29

