CPU power saving methods for
real-time workloads

Ramesh Thomas
Open Source Technology Center, Intel

Part of research on best configurations, methods and tools to help
Real-Time Application development in RT Linux

This talk is about CPU idle power management (C states) within
real-time workloads

Linux Foundation Wiki
https://wiki.linuxfoundation.org/realtime/documentation/howto/ap

plications/cpuidle

https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/cpuidle

Deeper C states are generally avoided in real-time configurations
Introduces jitter impacting determinism requirements

Methods discussed here would allow real-time applications to take
advantage of C state power savings without impacting determinism

CPU idle saves power that can be used by active cores, reduced
cooling needs and a lot more...

Different C states (CO, C1, C6...) vary in degree of power savings and
latency impact

Should be able to choose acceptable ones

Different cores may have different RT requirements
Should be able to manage C states in each core separately

Solutions tailored to a specific requirement

Main requirement for real-time applications is determinism

Number of latency samples

Good Bad

Latency plot Latency plot
1x108 | : 1x10° |
Thread0 —— | I Thread0 ——
Threadl —— Threadl ——
| Threadz ———] | Threadz ———
100000 Thread3 ——] 100000 ¢ Thread3 ——]
wa
I @
10000 | 1 % 10000 ¢ .
m
[p]
_ > _
1000 | . T 1000 | :
o
: |
100 | E 100 | | l]
_] = . |
= i
=
10 1 10
| _ 1 . l
Latency Latency
Example uses Intel® NUC kit with Intel® Celeron® Processor J3455.
3/22/2018 Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or 6

configuration will affect actual performance. Performance varies depending on system configuration.

Deeper the C state, more things get turned off, more state is lost
C1, C2 saves power while retaining most of CPU state
C3, C6 cache and TLB get flushed
C6 also power gated
Cache, TLB repopulation time would depend on their state
Synchronization activities in kernel add additional variability

It would be ok if the latency was consistent. But it is not.

Number of latency samples

Good Bad

Latency plot Latency plot
1x108 | : 1x10° |
Thread0 —— | I Thread0 ——
Threadl —— Threadl ——
| Threadz ———] | Threadz ———
100000 Thread3 ——] 100000 ¢ Thread3 ——]
wa
I @
10000 | 1 % 10000 ¢ .
m
[p]
_ > _
1000 | . T 1000 | :
o
: |
100 | E 100 | | l]
_] = . |
= i
=
10 1 10
| _ 1 . l
Latency Latency
Example uses Intel® NUC kit with Intel® Celeron® Processor J3455.
3/22/2018 Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or 8

configuration will affect actual performance. Performance varies depending on system configuration.

2 attributes of C states can be used to control them

C state exit latency
Deeper C states have higher exit latency

C state target residency

Deeper C states need to be idle longer to compensate for the energy
spent entering and exiting

Kernel policy (governor) selects C states based on these attributes

2 Methods corresponding to Attributes

- Block C states with higher exit latencies

- Block C states with higher target residencies

3/22/2018 10

C State Exit Latencies

Cl

Exit Latency

(Not actual scale, for illustration purpose only)

Cl
C2
C3

C6

Exit Latency

(Not actual scale, for illustration purpose only)

3/22/2018

Cl
C2

C3
Cé6

———————————————

Exit Latency

(Not actual scale, for illustration purpose only)

C States Target Residencies

C2

Deeper C state = higher Target Residency

3/22/2018

Filter C States by Target Residencies

o

< >
|dle Interval Time

C6

Pick deepest C state with TR that fits idle time

3/22/2018

1. SAFE LATENCY CONSTRAINT
Block C states with higher exit latencies

2. SAFE IDLE INTERVAL
Block C states with higher target residencies

C State Selection Policy in Kernel

R

CPU idle driver latency constraint
(e.g., intel _idle)
Y C state properties:
. e Exit latenc
CPU idle Y
. » Target residency
Kernel idle governor

(e.g., “menu”

Predicted
idle interval

3/22/2018

Allows user to specify a resume latency constraint

CPU idle governor limits C states with exit latencies lower than the
constraint

Application can change constraint at different phases

C states can be controlled in each core independently

Write constraint to
/sys/devices/system/cpu/cpuN/power/pm_qos resume latency us
e.qg. $echo 30 > /sys/.../om_qos_resume_latency us

During critical phases write *n/a"” to PM QoS disabling all C states.

At non-critical phases, write 0 to remove all restrictions saving
maximum power

Pull following commits from 4.16 into current RT Linux (4.14)
704d2ce, 0759e80 and c523c68

Recap
C State Atttributes User Controls

Exit Latency K——) Latency Constraint
T t .
aree &——/| Limit Idle Interval
Residency

3/22/2018

Calibration

10000

1. Find worst-case latency

1x108

[U

10 g

2. Find Safe Latency Constraint N

3. Find Safe Idle Interval

3/22/2018

%1068
100000 |
w
@
(=} L
S 10000
]
w
=
(=]
3 1000 |
ki
5
2 100
g I
=1
=z

10 ¢

Latency plot

1000 |

100 H

Thread0
Threadl
Threadz
Thread3

Latency

Latency plot

Threado
Threadl
Threadz
Thread3

Latency

Example uses Intel® NUC kit with Intel® Celeron® Processor J3455.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or

configuration will affect actual performance. Performance varies depending on system configuration.

21

Use cyclictest with histogram option
$cyclictest -a3 -n -q -H1000 -t4 -p80 -i200 -m -D24h —laptop

PM QoS constraint set to “n/a” = “no restriction”

Cyclictest “interval” (-i) option set to high value

Use cyclictest with histogram option
$cyclictest -a3 -n -q -H1000 -t4 -p80 -i200 -m -D24h —laptop

Calibrate PM QoS constraints until desired latency behavior is
achieved

Calibrate idle interval of cyclictest until desired latency behavior is
achieved

$cyclictest -a3 -n -q -H1000 -t4 -p80 =100 -m —-D24h -laptop

(Set PM QoS to “no restriction” for this calibration)

Example Calibration
(hypothetical numbers)

1. Worst-case latency = 400 us
2. Safe Latency Constraint = 30 us

3. Safe Ildle Interval = 100 us

Number of latency samples

1x108

100000 ¢

10000

1000 |

100 H

10 g

1x106

100000

10000 |

1000

100 ¢

10 ¢

Latency plot

Thread0
Threadl
Threadz
Thread3

Latency

Latency plot

Threado
Threadl
Threadz
Thread3

Latency

Example uses Intel® NUC kit with Intel® Celeron® Processor J3455.

3/22/2018 Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or

configuration will affect actual performance. Performance varies depending on system configuration.

25

Example Tuning

(hypothetical numbers)
Worst-case latency = 400 us
Safe Latency Constraint = 30 us
Safe Idle Interval = 100 us

Deadline = 1000 us

1. Wake 400 us before deadline
2. Prime cache

3. Incritical phase use
Safe Idle Interval method or
Safe Latency Constraint method

3/22/2018

Total idle = 1000 us

Critcal phase =400 us
ﬁ

Safe Idle Interval = 100 us

> >

Set PM QoS constraint = 30 us

26

CPU topology awareness helps

Depth of C state depends on state of units in group
Logical processors in core, cores in package
Group threads that can go idle at same time

Prime cache after waking from deeper C states before reaching critical
phase

Execute code and access data few times

Fine tune kernel configurations
isolcpus, irgaffinity, nohz_full, rcu_nocb, etc.

Refer wiki for more details
https://wiki.linuxfoundation.org/realtime/documentation/howto/applicati

ons/cpuidle

https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/cpuidle

Methods do not compromise Real-time constraints

Provides flexibility, variety and degree of options

Uses available tools and infrastructure

Scalable and can be easily included early in application design

References

— Linux Foundation Wiki
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/cpuidle

- Kernel parameters https://www.kernel.org/doc/Documentation/admin-guide/kernel-
parameters.txt

— Kernel scheduling ticks https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
- PM QoS https://www.kernel.org/doc/Documentation/power/pm_gos_interface.txt
- Cyclictest https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest

- Reducing OS jitter _ _ _ _ _
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/kernel-per-
CPU-kthreads.txt?h=v4.14-rc?2

- Good reference for C states

a with4y
MSR&f=false -

3/22/2018 29

https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/cpuidle
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/power/pm_qos_interface.txt
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/kernel-per-CPU-kthreads.txt?h=v4.14-rc2
https://books.google.com/books?id=DFAnCgAAQBAJ&pg=PA177&lpg=PA177&dq=c+state+latency+MSR&source=bl&ots=NLTLrtN4JJ&sig=1ReyBgj1Ej0_m6r6O8wShEtK4FU&hl=en&sa=X&ved=0ahUKEwifn4yI08vZAhUFwVQKHW1nDgIQ6AEIZzAH#v=onepage&q=c%20state%20latency%20MSR&f=false

Thank you.

isolcpus= cpu list. Give the list of critical cores. Isolates the critical cores at user level.
ikcgffinityxpu list. Give list of non-critical cores. This will protect the critical cores from
S.

rcu_nocbs=cpu list. Give the list of critical cores. This stops RCU callbacks from getting
called into the critical cores.

nohz=off. The kernel's “dynamic ticks” mode of managin_Fhscheduling-clock ticks is
known to impact latencies while exiting CPU idle states. This option turns that mode off.
Refer to https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt for more
information about this setting.

nohz_full=cpu list. Give the list of critical cores. This will enable “adaptive ticks” mode of
managing scheduling-clock ticks. The cores in the list will not get scheduling-clock ticks
if there is only a single task running or if the core is idle. The kernel should be built with
either the CONFIG_NO_HZ FULL _ALL or CONFIG_NO_HZ FULL options enabled.

https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt

If working on RT 4.14, pull in following commits from 4.16
704d2ce, 0759e80 and c523¢68

$git format-patch -1 <commit>
$git apply --reject <patch>

Apply in order. May need to resolve some rejects

Priming cache refers to forcing population of CPU cache with code
and data that needs consistent access times

Before reaching the point where jitter is to be avoided, in
preparation, execute/access critical code/data causing them to get
loaded in the cache.

$turbostat --debug

—’

cyclictest

Measure latencies. Sleeps for a specified interval and compares that interval
with actual time spent in sleep. The difference is the latency. Generates
histogram which can be used with a plotting tool.

Run with —laptop option. By default it disables C states using PM QoS

turbostat
Gives C state utilization by cores.
$turbostat —debug

powertop

Shows power consumption details
gnuplot

Plotting tool.

(intel‘

Intel and the Intel logo are trademarks of Intel Corporation in the U.S.
and/or other countries.
*Other names and brands may be claimed as the property of others.

© Intel Corporation

