
Ramesh Thomas

Open Source Technology Center, Intel

CPU power saving methods for
real-time workloads

Background

⎻ Part of research on best configurations, methods and tools to help
Real-Time Application development in RT Linux

⎻ This talk is about CPU idle power management (C states) within
real-time workloads

⎻ Linux Foundation Wiki
https://wiki.linuxfoundation.org/realtime/documentation/howto/ap
plications/cpuidle

3/22/2018 2

https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/cpuidle

Introduction

⎻ Deeper C states are generally avoided in real-time configurations
⎻ Introduces jitter impacting determinism requirements

⎻ Methods discussed here would allow real-time applications to take
advantage of C state power savings without impacting determinism

3/22/2018 3

Why do we need this?

⎻ CPU idle saves power that can be used by active cores, reduced
cooling needs and a lot more…

⎻ Different C states (C0, C1, C6…) vary in degree of power savings and
latency impact
⎻ Should be able to choose acceptable ones

⎻ Different cores may have different RT requirements
⎻ Should be able to manage C states in each core separately

3/22/2018 4

Focus on Determinism

⎻ Solutions tailored to a specific requirement

⎻ Main requirement for real-time applications is determinism

3/22/2018 5

3/22/2018
Example uses Intel® NUC kit with Intel® Celeron® Processor J3455.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or
configuration will affect actual performance. Performance varies depending on system configuration.

6

Good Bad

Where does the jitter come from?

⎻ Deeper the C state, more things get turned off, more state is lost
⎻ C1, C2 saves power while retaining most of CPU state

⎻ C3, C6 cache and TLB get flushed

⎻ C6 also power gated

⎻ Cache, TLB repopulation time would depend on their state

⎻ Synchronization activities in kernel add additional variability

⎻ It would be ok if the latency was consistent. But it is not.

3/22/2018 7

3/22/2018
Example uses Intel® NUC kit with Intel® Celeron® Processor J3455.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or
configuration will affect actual performance. Performance varies depending on system configuration.

8

Good Bad

How to control C state selection?

⎻ 2 attributes of C states can be used to control them

⎻ C state exit latency
⎻ Deeper C states have higher exit latency

⎻ C state target residency
⎻ Deeper C states need to be idle longer to compensate for the energy

spent entering and exiting

⎻ Kernel policy (governor) selects C states based on these attributes

3/22/2018 9

2 Methods corresponding to Attributes

⎻ Block C states with higher exit latencies

⎻ Block C states with higher target residencies

3/22/2018 10

C State Exit Latencies

3/22/2018 11

C1

C2

C3

C6

Exit Latency
(Not actual scale, for illustration purpose only)

C State Exit Latency Constraint

3/22/2018 12

C1

C2

C3

C6

Exit Latency
(Not actual scale, for illustration purpose only)

Filter C States by Exit Latencies

3/22/2018 13

C1

C2

C3

C6

Exit Latency
(Not actual scale, for illustration purpose only)

C States Target Residencies

3/22/2018 14

C1
C6

C2

Deeper C state = higher Target Residency

Filter C States by Target Residencies

3/22/2018 15

C1
C6

C2

Pick deepest C state with TR that fits idle time

Idle Interval Time

Name the 2 methods

⎻ 1. SAFE LATENCY CONSTRAINT
⎻ Block C states with higher exit latencies

⎻ 2. SAFE IDLE INTERVAL
⎻ Block C states with higher target residencies

3/22/2018 16

C State Selection Policy in Kernel

3/22/2018 17

Kernel idle
CPU idle
governor

(e.g., “menu”)

latency constraint

C state properties:
• Exit latency
• Target residency

CPU idle driver
(e.g., intel_idle)

Predicted
idle interval

P-Unit HW

PM QoS (Quality of Service) Framework

⎻ Allows user to specify a resume latency constraint

⎻ CPU idle governor limits C states with exit latencies lower than the
constraint

⎻ Application can change constraint at different phases

⎻ C states can be controlled in each core independently

3/22/2018 18

PM QoS (continued…)

⎻ Write constraint to
/sys/devices/system/cpu/cpuN/power/pm_qos_resume_latency_us
⎻ e.g. $echo 30 > /sys/…/pm_qos_resume_latency_us

⎻ During critical phases write “n/a” to PM QoS disabling all C states.

⎻ At non-critical phases, write 0 to remove all restrictions saving
maximum power

⎻ Pull following commits from 4.16 into current RT Linux (4.14)
⎻ 704d2ce, 0759e80 and c523c68

3/22/2018 19

Recap

3/22/2018 20

C State Atttributes User Controls

Exit Latency

Target
Residency

Latency Constraint

Limit Idle Interval

Calibration

1. Find worst-case latency

2. Find Safe Latency Constraint

3. Find Safe Idle Interval

3/22/2018 21
Example uses Intel® NUC kit with Intel® Celeron® Processor J3455.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or
configuration will affect actual performance. Performance varies depending on system configuration.

Calibrate Worst-case latency

⎻ Use cyclictest with histogram option
⎻ $cyclictest -a3 -n -q -H1000 -t4 -p80 -i200 -m –D24h –laptop

⎻ PM QoS constraint set to “n/a” = “no restriction”

⎻ Cyclictest “interval” (-i) option set to high value

3/22/2018 22

Find Safe Latency Constraint

⎻ Use cyclictest with histogram option
⎻ $cyclictest -a3 -n -q -H1000 -t4 -p80 -i200 -m –D24h –laptop

⎻ Calibrate PM QoS constraints until desired latency behavior is
achieved

3/22/2018 23

Find Safe Idle Interval

⎻ Calibrate idle interval of cyclictest until desired latency behavior is
achieved
⎻ $cyclictest -a3 -n -q -H1000 -t4 -p80 –i100 -m –D24h –laptop

⎻ (Set PM QoS to “no restriction” for this calibration)

3/22/2018 24

Example Calibration
(hypothetical numbers)

1. Worst-case latency = 400 us

2. Safe Latency Constraint = 30 us

3. Safe Idle Interval = 100 us

3/22/2018 25
Example uses Intel® NUC kit with Intel® Celeron® Processor J3455.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or
configuration will affect actual performance. Performance varies depending on system configuration.

Example Tuning

(hypothetical numbers)

Worst-case latency = 400 us

Safe Latency Constraint = 30 us

Safe Idle Interval = 100 us

Deadline = 1000 us

1. Wake 400 us before deadline

2. Prime cache

3. In critical phase use
• Safe Idle Interval method or
• Safe Latency Constraint method

3/22/2018 26

Total idle = 1000 us

Critcal phase = 400 us

Safe Idle Interval = 100 us

Set PM QoS constraint = 30 us

Additional Strategies

⎻ CPU topology awareness helps
⎻ Depth of C state depends on state of units in group

⎻ Logical processors in core, cores in package

⎻ Group threads that can go idle at same time

⎻ Prime cache after waking from deeper C states before reaching critical
phase
⎻ Execute code and access data few times

⎻ Fine tune kernel configurations
⎻ isolcpus, irqaffinity, nohz_full, rcu_nocb, etc.

⎻ Refer wiki for more details
https://wiki.linuxfoundation.org/realtime/documentation/howto/applicati
ons/cpuidle

3/22/2018 27

https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/cpuidle

Key Takeaways

⎻ Methods do not compromise Real-time constraints

⎻ Provides flexibility, variety and degree of options

⎻ Uses available tools and infrastructure

⎻ Scalable and can be easily included early in application design

3/22/2018 28

References

⎻ Linux Foundation Wiki
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/cpuidle

⎻ Kernel parameters https://www.kernel.org/doc/Documentation/admin-guide/kernel-
parameters.txt

⎻ Kernel scheduling ticks https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt

⎻ PM QoS https://www.kernel.org/doc/Documentation/power/pm_qos_interface.txt

⎻ Cyclictest https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest

⎻ Reducing OS jitter
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/kernel-per-
CPU-kthreads.txt?h=v4.14-rc2

⎻ Good reference for C states
https://books.google.com/books?id=DFAnCgAAQBAJ&pg=PA177&lpg=PA177&dq=c+state+laten
cy+MSR&source=bl&ots=NLTLrtN4JJ&sig=1ReyBgj1Ej0_m6r6O8wShEtK4FU&hl=en&sa=X&ved=
0ahUKEwifn4yI08vZAhUFwVQKHW1nDgIQ6AEIZzAH#v=onepage&q=c%20state%20latency%20
MSR&f=false

3/22/2018 29

https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/cpuidle
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/power/pm_qos_interface.txt
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/kernel-per-CPU-kthreads.txt?h=v4.14-rc2
https://books.google.com/books?id=DFAnCgAAQBAJ&pg=PA177&lpg=PA177&dq=c+state+latency+MSR&source=bl&ots=NLTLrtN4JJ&sig=1ReyBgj1Ej0_m6r6O8wShEtK4FU&hl=en&sa=X&ved=0ahUKEwifn4yI08vZAhUFwVQKHW1nDgIQ6AEIZzAH#v=onepage&q=c%20state%20latency%20MSR&f=false

Thank you.

Optimal Kernel Boot Parameters

⎻ isolcpus= cpu list. Give the list of critical cores. Isolates the critical cores at user level.

⎻ irqaffinity=cpu list. Give list of non-critical cores. This will protect the critical cores from
IRQs.

⎻ rcu_nocbs=cpu list. Give the list of critical cores. This stops RCU callbacks from getting
called into the critical cores.

⎻ nohz=off. The kernel's “dynamic ticks” mode of managing scheduling-clock ticks is
known to impact latencies while exiting CPU idle states. This option turns that mode off.
Refer to https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt for more
information about this setting.

⎻ nohz_full=cpu list. Give the list of critical cores. This will enable “adaptive ticks” mode of
managing scheduling-clock ticks. The cores in the list will not get scheduling-clock ticks
if there is only a single task running or if the core is idle. The kernel should be built with
either the CONFIG_NO_HZ_FULL_ALL or CONFIG_NO_HZ_FULL options enabled.

3/22/2018 31

https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt

PM QoS New Commits

⎻ If working on RT 4.14, pull in following commits from 4.16
⎻ 704d2ce, 0759e80 and c523c68

⎻

⎻ $git format-patch -1 <commit>

⎻ $git apply --reject <patch>

⎻ Apply in order. May need to resolve some rejects

3/22/2018 32

Priming Cache

⎻ Priming cache refers to forcing population of CPU cache with code
and data that needs consistent access times

⎻ Before reaching the point where jitter is to be avoided, in
preparation, execute/access critical code/data causing them to get
loaded in the cache.

3/22/2018 33

Useful tools

⎻ cyclictest
⎻ Measure latencies. Sleeps for a specified interval and compares that interval

with actual time spent in sleep. The difference is the latency. Generates
histogram which can be used with a plotting tool.

⎻ Run with –laptop option. By default it disables C states using PM QoS

⎻ turbostat
⎻ Gives C state utilization by cores.
⎻ $turbostat –debug

⎻ powertop
⎻ Shows power consumption details

⎻ gnuplot
⎻ Plotting tool.

3/22/2018 34

$turbostat --debug

Disclaimers

Intel and the Intel logo are trademarks of Intel Corporation in the U.S.
and/or other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation

3/22/2018 35

