The Android Build System

Introduction

Ron Munitz

Updated: February 2014

PSCG

This work is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/lic@ e
sal4.0/ Authud

© Copyright Ron Munitz 2014

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

The Android Build System

Host Tools

Target Tools

Platform tools

Documentation Tools

The Target’'s (Android Platform) code base
Build System

The Android Build System

e Build Systems are a huge topic.
e A build system
o Takes a series of rules or recipes
o Knows how to generate an embedded platform
iImages/artifacts from source code, configuration
files, BLOBsS, ...

o Allows to easily select a premade configuration and

build a ready to use code without working too hard
o Allows customizing products and defining new cines

The Android Build System

e Consists of two essential folders:

o build/ Contains the definitions of the build system,
along with some predefined devices.

o devicel/ Contains definitions for devices. The build
system rules really parse them

An optional, out of source control folder may be

added for vendor specific additions (mainly BLOBS).
It is listed as vendor/

build/

buildspec.mk.default - template for remake
CleanSpec.mk - Build cleanup definitions
core - Build System rules

envsetup.sh - environment preparation script
libs - some host helper libs

target - Target definitions.

tools - Building, packaging, etc.

The Android Build System

e Main folder: build/
e Based on GNU make

o Makefile on top directory says: #include build/core.
mk

o Then a lot of other files are included.
o Heavily uses Python and bash.

e Heavily uses environment variables
o (@see build/envsetup.sh

The Android Build System

e \ery easy to use for building:

o . build/envsetup.sh #sets env vars/functions
o lunch <config>-<variant> # selects configuration
o make # That's gnu make, no customizations.

e \ery easy for flashing via Software tools

o With emulator (no need to flash...)
o With fastboot
o With other custom bootloaders

build/target

e This is what you should probably care about.

e (Contains two folders:

o board/ - board definition file
o product/ - product definition file

e Build recipes are defined in these folders.

e Device definitions in device/ include files
from these folders, and derive from recipes.

e Or include their own.

build/target/board

Where (some) board magic is defined

build/target/board

e Android.mk - automatically included by build

o Includes the no longer necessary AndroidBoard.

mk file at TARGET_DEVICE_DIR

m What is required is BoardConfig.mk .
m @see build/core/config.mk

o Populates the fastboot read android-info.txt file with

the contents of the devices board.info.txt
m Or with "board=$(TARGET _BOOTLOADER_ BOARD NAME)"

e Templates for predefined boards
o (@see next slide

build/target/board (cont.)

e Contains build templates for predefined
boards
o emulator, generic_<arch>, vbox_ x86

e Each contains:

o AndroidBoard.mk (obsolete)
o BoardConfig.mk - Board definitions (see next slide)

o device.mk - Some Board/Hardware related
pacakges at device.mk and BoardConfig.mk

A bit about BoardConfig.mk

TARGET NO BOOTLOADER - Self Explaining
TARGET NO KERNEL - use prebuilt kernel
TARGET USE CAMERA STUB

Architecture, ABls, Partition layout, OpenGL
config, Radio config...

BoardConfig.mk search path

e The build system searches for BoardConfig.

mk at the following locations:

o build/target/board/$TARGET _DEVICE/
o device/*/$TARGET_DEVICE/
o vendor/*/$TARGET _DEVICE/

e |f there is no such file - the build fails.

e |f there is more than one match - the build
fails.

build/target/product

Where (product packages) dreams come true

build/target/product

AndroidProducts.mk defines a list of products to add
to the build system.
More products can be added by declaring additional

AndroidProducts.mk files in either
o device/.../
o vendor/.../

security/ includes prebuilt certificates

Quick Start flow:
o generic_mips.mk INHERITS generic.mk INHERITS
generic_no_telephony.mk AND telephony.mk ...

build/target/product example

® aosp x86.mk

INHERITS

o full x86.mk
m INHERITS

e aosp base telephony.mk
e board/generic_x86/device.mk

m INCLUDES
e $(SRC_TARGET_DIR)/product/emulator.mk

e Another example + a full walkthrough are
given in the next slides

product/aosp_arm.mk
(similiar for aosp_x86.mk and
fosp mips.mi) [¢

product/aosp _base _telephony.mk

l

product/full_base_telephony.mk

_board/generic/devicemk board/emulator.mk

. PRODUCT_PROPERTY_OVERRIDES :=\ - PRODUCT PACKAGES +=\

: ro.ril.hspxa=1 3 emulator \
ro.ril.gprsclass=10] libGLES_trasnslator \
ro.dbd.gemu=1 : :

PRDOUCT_COPY_FILES :=\ PRODUCT COPY FILES +=

' apns_conf.xml] device/generic/goldfish/
vold.conf . init.goldfish.rc:root/init.goldfish.rc \
media_profiles.xml .

MlvuuLvuavop dilllidlin

4/productlfull.m .
{ —

. PRODUCT_PACKAGES
- PRODUCT_PROPERTY_OVERRIDE
. PRODUCT_COPY_FILES

product/aosp_base.mk product/telephony.mk
PRODUCT_PACKAGES :=\
If"f°°'U'°t/f“+ _basemk—~—r Dialer \
. PRODUCT _ : Mms \
: PRODUCT_PR X : rild

productllocales._.full.mk. oot frameworks/bas external/svox/
PRODUCT_LOCALES : e/data/sounds/ pico/lang/all_
productianguages_full.mk AllAudio.mk pico_languag

:-------------------------: Q_Q7r‘1k

\

product/full bzse_telephony.mb»
product/aoSp_base.mk product/telephony.mk
product/fullibase.mk_ R
locales_full.mk i — > AllAudio.mk ?r:lk_pico_languages.

Ianguages_*ull.mk

...[fonts.mk<-Tkeyboards.mkchromium.mk product/core.mk

core_base.mk

core_minimal.mk i

' PRODUCT BOOT JARS += !
© PRODUCT_RUNTIMES +=

P e R R e T |

* PRODUCT_PACKAGES
! PRODUCT COPY FILES

: ERODUCT_PROPERTY_

OVERRIDES

build/core/build-system.html

The definitive build system document!
Most recent news!

Draft version
~rom 2006...
Does give a good overview of the design

criteria.

build/core

The nails and hammers of the printed, framed
dream

build/core

e Processes the definitions we have discussed
of the product and board

e defines the language for them

e Also applies a lot of other configuration,
compiler rules, and what not...

e @see config.mk ,main.mk, product.mk for
Info

u
o
nk'Y
Tha

http://www.linkedin.com/in/ronmunitz
https://google.com/+RonMunitz
https://twitter.com/ronubo

