
Embedded Linux Conference Europe 2008
7 November 2008

Avoiding Web Application Flaws In
Embedded Devices

Jake Edge
LWN.net

jake@lwn.net
URL for slides: http://lwn.net/talks/elce2008

mailto:jake@lwn.net

Embedded Linux Conference Europe 2008
7 November 2008

Overview

Examples – embedded devices gone bad

Brief introduction to HTTP

Authentication bypass

Cross-site scripting (XSS)

Cross-site request forgery (XSRF)

SQL (?) injection

Additional threats

General web and application security

Embedded Linux Conference Europe 2008
7 November 2008

Examples

A-Link WL54AP3 and WL54AP2 – vulnerable to
XSS, XSRF

BT (British Telecom) Home Hub – vulnerable to
XSS, authentication bypass, XSRF

Cisco Linksys WAG54GS – vulnerable to XSS,
XSRF

Xerox WorkCentre – vulnerable to authentication
bypass leading to compromise

Router hacking challenge has many examples

Embedded Linux Conference Europe 2008
7 November 2008

Why embedded web apps?

Typically used for configuration of the device

Easy interface that most people are used to

Small webservers are easy to implement or obtain

Double-edged sword

Web apps have well known vulnerability types

Compromise can lead to a variety of bad results

Embedded Linux Conference Europe 2008
7 November 2008

Compromise can lead to ...

Changing DNS settings – phishing/pharming

Eavesdropping on traffic - network/VOIP

Devices can be repurposed – spam, distributed
denial of service

In most cases, the owner will be completely
unaware that it has been compromised

Embedded Linux Conference Europe 2008
7 November 2008

Theme

Web application security flaws are almost always
caused by:

Trusting and/or not validating user input
Anything that comes from users or can be controlled by them is
suspect

Embedded Linux Conference Europe 2008
7 November 2008

... and sub-theme

Developers often assume, incorrectly, that input to
their web applications always comes from
browsers

It is trivial to generate HTTP from programs

Javascript validation is only useful as a help to the user.
It does not provide any server-side protection

Embedded Linux Conference Europe 2008
7 November 2008

HTTP – the web protocol

Browser sends HTTP requests and then displays
the results (generally HTML/image)

Very simple protocol, with a few commands:

HEAD – get the headers and dates for the page

GET – get the html (or image or ...), parameters are part
of URL (.../foo?id=4&page=3)

POST – encodes form parameters into the request which
goes to a specific program named in FORM

There are more, these are the most common

Embedded Linux Conference Europe 2008
7 November 2008

HTTP Example
[jake@ouzel ~]$ telnet lwn.net 80
...

GET /talks/elce2008/ HTTP/1.1
Host: lwn.net

HTTP/1.1 200 OK
Date: Mon, 03 Nov 2008 02:32:14 GMT
Server: Apache
Last­Modified: Mon, 03 Nov 2008 01:23:47 GMT
ETag: "b08003­59e­45abecc6faec0"
Accept­Ranges: bytes
Content­Length: 1438
Connection: close
Content­Type: text/html

<html>
<head>
<title>ELCE 2008</title>
...

Embedded Linux Conference Europe 2008
7 November 2008

HTML Forms

These are the standard web forms that we fill in all
the time:

<FORM METHOD=”post” ACTION=”some_action”>
<INPUT TYPE=”text” NAME=”name”>

<INPUT TYPE=”password” NAME=”password”>

<INPUT TYPE=”submit” value=”action”>

</FORM>

The parameters (name, password) will get
encoded and submitted as a POST

Embedded Linux Conference Europe 2008
7 November 2008

GET vs. POST

HTTP GET requests are not meant to change the
state of the application

Classic example: http://somehost.com/delete?id=4

State changes should be done through POST

This is important to protect against trivial XSRF as
well as innocent mistakes like the above

http://somehost.com/delete?id=4

Embedded Linux Conference Europe 2008
7 November 2008

Exploits

Often requires more than one vulnerability to fully
compromise a device

They often require user action to follow a link or
visit a particular web page.

Particular device models can be targeted due to
various monocultures (ISPs for example)

Embedded Linux Conference Europe 2008
7 November 2008

Authentication bypass

A variety of techniques to circumvent the
username/password of a web app

For apps that check pathnames, aliasing can be a
problem. Ex: /path/foo vs. /path//foo

When links to certain pages are only presented
post-login, some believe this effectively protects
them, but it is easy to guess/know the path

Embedded Linux Conference Europe 2008
7 November 2008

Avoiding authentication bypass

App must be coded such that each privileged
page checks auth status whenever accessed

There are too many ways to get to the same page with
different looking URLs

Attackers can purchase device to determine what
paths are of interest

“Hidden” paths are security through obscurity

If separate program is used to perform the
privileged operation, it must also check auth

Embedded Linux Conference Europe 2008
7 November 2008

Cross-site scripting (XSS)

Comes from echoing user input back to browser
without properly handling HTML elements

Common mistake is to put user input into error
message:

Unknown input <script>alert(“XSS”)</script>

Attacker controls Javascript sent by your app

Can be used to send cookie or other sensitive
information to attacker-controlled sites

Embedded Linux Conference Europe 2008
7 November 2008

Avoiding XSS

The main defense is to filter all user input before
sending it back to the browser

In particular, it is recommended that these
characters: < > () & # be filtered

< > () & # are substitutes

Usually the language has a function to call to do that for
you: htmlentities(), cgi.escape(), etc.

Embedded Linux Conference Europe 2008
7 November 2008

Cross-site request forgery (XSRF)

User follows a link (from email, irc, ...) that quietly
causes some action on a different site

For GETs that change the state, the page could
have an

Cookies get helpfully sent along by browser

An iframe or other scheme to create a FORM and
submit it to deviceURL/form, cookies too

 deviceURL can be guessed (192.168.1.1?) for
many devices

Embedded Linux Conference Europe 2008
7 November 2008

Avoiding XSRF

Do not use state-changing GETs

For forms, add a randomly named hidden field
with a random value, associate those with a
session and check them on FORM submission

If app is susceptible to XSS, random name/values
can be extracted from forms

For extremely sensitive operations (changing
password, others), require re-authentication

Embedded Linux Conference Europe 2008
7 November 2008

SQL (?) injection

Many embedded apps don't use a SQL db

SQLite, file based db being used more

Depending on how data is stored, similar techniques
could be used

Abuses SQL queries with crafted data from form
variables:

SELECT id FROM users WHERE name='$name' AND pass='$pass'

if $pass is: ' OR 1=1 ­­

query becomes:

SELECT id FROM users WHERE name='$name' AND pass='' OR 1=1 ­­'

Embedded Linux Conference Europe 2008
7 November 2008

Avoiding SQL injection

Easiest method is to use placeholders in query:
db_call(“SELECT id FROM users WHERE name=? AND pass=?”, $name, $pass)

If database API does not allow that, use
db‑specific quote filter on user input:

db_quote($name)

db_quote($pass)

Depending on DBMS, stored procedures can also
prevent SQL injection

Embedded Linux Conference Europe 2008
7 November 2008

Additional threats

Session hijacking – essentially auth bypass

Sessions that are restricted based on IP address are
vulnerable to spoofing

Sessions that use cookies can have cookies stolen via
XSS or other means

Sensitive sessions (that allow config changes for
example) should be fairly short-lived

Denial of service – crashing the device or
otherwise interfering with normal functioning

Embedded Linux Conference Europe 2008
7 November 2008

General web and app security

By default, web servers should only listen on local
network, not the internet

All unused services should be disabled

There are Linux security tools that can assist in
locking down webservers and devices:

SELinux

AppArmor

SMACK, Tomoyo Linux, grsecurity, RSBAC, etc.

Embedded Linux Conference Europe 2008
7 November 2008

Theme and sub-theme

Any input that can be controlled or influenced by a
user (or attacker) must be validated carefully.
Period.

Validation should use whitelists, not blacklists

Browsers do not generate very much hostile
traffic, programs do. Expect the unexpected.

Javascript validation is not sufficient

Embedded Linux Conference Europe 2008
7 November 2008

Where to get more information?

My slides and some links
http://lwn.net/talks/elce2008

Wikipedia has some good information on the
various flaw types

Open Web Application Security Project (OWASP)
http://owasp.org/

http://lwn.net/talks/elce2008
http://owasp.org/

Embedded Linux Conference Europe 2008
7 November 2008

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

