ARM

Thwarting unknown bugs:
hardening features in the mainline
Linux kernel

Mark Rutland <mark.rutland@arm.com>
ARM Ltd

Embedded Linux Conference Europe 2016
October 3, 2016

© ARM 2016



What's the problem?

ARM



Linux has bugs today

git log —--oneline \
-—grep="'Fixes:" \
vd.7..v4.8-rcl | \
wc -1

503

ARM



Some bugs have security implications

4

|There are 1496 CVE entries that match your search.

Name
CVE-2016-6516

CVE-2016-6480
CVE-2016-6198
CVE-2016-6197
CVE-2016-6187
CVE-2016-6162
CVE-2016-6156
CVE-2016-6136
CVE-2016-6130
CVE-2016-5829

CVE-2016-5828

CVE-2016-5728

© ARM 2016

Description
Race condition in the ioctl_file_dedupe_range function in fs/ioctl.c in the Linux kernel through 4.7 allows local users to cause a denial of service (heap-based buffer
overflow) or possibly gain privileges by changing a certain count value, aka a "double fetch" vulnerability.
Race condition in the ioctl_send_fib function in drivers/scsi/aacraid/commctrl.c in the Linux kernel through 4.7 allows local users to cause a denial of service (out-of-bounds
access or system crash) by changing a certain size value, aka a "double fetch" vulnerability.
The filesystem layer in the Linux kernel before 4.5.5 proceeds with post-rename operations after an OverlayFS file is renamed to a self-hardlink, which allows local users to
cause a denial of service (system crash) via a rename system call, related to fs/namei.c and fs/open.c.
fs/overlayfs/dir.c in the OverlayFS filesystem implementation in the Linux kernel before 4.6 does not properly verify the upper dentry before proceeding with unlink and
rename system-call processing, which allows local users to cause a denial of service (system crash) via a rename system call that specifies a self-hardlink.

The apparmor_setprocattr function in security/apparmor/Ism.c in the Linux kernel before 4.6.5 does not validate the buffer size, which allows local users to gain privileges
by triggering an AppArmor setprocattr hook.

net/core/skbuff.c in the Linux kernel 4.7-rc6 allows local users to cause a denial of service (panic) or possibly have unspecified other impact via certain IPv6 socket
operations.

Race condition in the ec_device_ioctl_xcmd function in drivers/platform/chrome/cros_ec_dev.c in the Linux kernel before 4.7 allows local users to cause a denial of service
(out-of-bounds array access) by changing a certain size value, aka a "double fetch" vulnerability.

Race condition in the audit_log_single_execve_arg function in kernel/auditsc.c in the Linux kernel through 4.7 allows local users to bypass intended character-set
restrictions or disrupt system-call auditing by changing a certain string, aka a "double fetch" vulnerability.

Race condition in the sclp_ctl_ioctl_sccb function in drivers/s390/char/sclp_ctl.c in the Linux kernel before 4.6 allows local users to obtain sensitive information from kernel
memory by changing a certain length value, aka a "double fetch" vulnerability.

Multiple heap-based buffer overflows in the hiddev_ioctl_usage function in drivers/hid/usbhid/hiddev.c in the Linux kernel through 4.6.3 allow local users to cause a denial
of service or possibly have unspecified other impact via a crafted (1) HIDIOCGUSAGES or (2) HIDIOCSUSAGES ioctl call.

The start_thread function in arch/powerpc/kernel/process.c in the Linux kernel through 4.6.3 on powerpc platforms mishandles transactional state, which allows local users
to cause a denial of service (invalid process state or TM Bad Thing exception, and system crash) or possibly have unspecified other impact by starting and suspending a
transaction before an exec system call.

Race condition in the vop_ioctl function in drivers/misc/mic/vop/vop_vringh.c in the MIC VOP driver in the Linux kernel before 4.6.1 allows local users to obtain sensitive
information from kernel memory or cause a denial of service (memory corruption and system crash) by changing a certain header, aka a "double fetch" vulnerability.

("linux kernel" CVEs on mitre.org, 2016-09-27 - https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel)

ARM


https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel

Adversaries find bugs before we do

_vs x86_64 Linux Kernel

Fron
Date: Wed, 15 Sep 2010 22:

:23 -0700 (PDT)
/*

_Vs Linux Kernel x86_64 eday
Today is a sad day..

R.I.P.
Tue, 29 Apr 2008 / Tue, 7 Sep 2018

a bit of history:
MCAST _MSFILTER Compat mode bug found... upon commit! (2 year life on this one)

Thanks you for signing-off on this one guys.

This exploit has been tested very thoroughly
over the course of the past few years on many many targets.

Thanks to redhat for being nice enough to backport it into early
kernel versions (anything from later August 2008+)

Exploit attached. Another @day bites the dust and goes into our public exploit pack :)
_ brings you ABftw.c - Linux Kernel x86 64 local not@dayanymore exploit.

Attachment: ABftw.c
Description:

(Trimmed and redacted announcement - http://seclists.org/fulldisclosure/2010/Sep/268)

ARM


http://seclists.org/fulldisclosure/2010/Sep/268

Bugs go unnoticed upstream for a long time

L e e
v e v b e

(Kees Cook, LSS2016, "Status of the Kernel Self Protection Project' - https://outflux.net/slides/2016/1ss/kspp.pdf)

6 © ARM 2016 ARM


https://outflux.net/slides/2016/lss/kspp.pdf

The presence of bugs is unavoidable

= Code written by experienced engineers has bugs

= Code reviewed by subject-matter experts has bugs
= Static analysis only finds some bugs

= Testing and fuzzing only finds some bugs

= Formal methods do not scale to size and scope of project
(30+ architectures with varied ISAs, memory models, system-level details)

All are valuable, but insufficient to rule out bugs entirely.

7 © ARM 2016 ARM



The big picture

* Linux is being attacked in the wild
= ... via bugs we don't know about (yet)

= ... which we can't hope to avoid (yet)

Products (and their users) can be vulnerable for their entire lifetime

8 © ARM 2016 ARM



Hardening

9 © ARM 2016 ARM



Making unknown bugs harder to exploit

= Target common classes of error (e.g. accidental user pointer dereference)
= Have common code prevent and/or detect this

* When detected, prevent further badness somehow (e.g. panic())

= Reduces exploitability, but doesn't fix underlying bugs

= Complementary to usual bug hunting

10 © ARM 2016 ARM



Hardening in mainline

= Some hardening features have made it to mainline

= Supported upstream

= Lower maintenance burden
= ... but many are not enabled by default (yet)

= You could be missing out on free protection today

= Easy to be put off by unclear tradeoffs and precevied issues
= ... and only "recently"

= Most phones aren't running v4.8 yet...
= Easy to miss if you're not paying attention

I © ARM 2016 ARM



The rest: coming soon

12 © ARM 2016 ARM



ARM

The trademarks featured in this presentation are registered and/or unregistered trademarl
(or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks
trademarks of their respective owners.
Copyright © 2016 ARM Limited

© ARM 2016



	
	
	Linux has bugs today
	Some bugs have security implications
	Adversaries find bugs before we do
	Bugs go unnoticed upstream for a long time
	The presence of bugs is unavoidable
	The big picture
	
	Making unknown bugs harder to exploit
	Hardening in mainline
	
	

