sigrok Overview

- Provides a simple Open Source solution for mostly proprietary and some Open Source Hardware digital logic devices
- Common framework which includes output format, device metadata, and H/W interfacing
sigrok Project

- Blanket project with various libraries, backends, protocol decoders, third-party firmware, and graphical frontends
- Aims to make a common framework for a variety of logic analyzers, oscilloscopes, and other analog/digital debugging devices
Meet The Family

- **libsigrok** – Heart and brains behind the device communication, functionality, and control
- **libsigrokdecode** – Python3 interfacing lib in C + protocol decoders
- **sigrok-cli** – Command line backend for sigrok
- **sigrok-util** – Various useful scripts + utilities
- **sigrok-dumps** – Collections of various captures
- **fx2lafw** – OSS Firmware for Cypress FX2 LAs
- **PulseView** – sigrok QT GUI frontend
sigrok Components

- H/W Interface
- libsigrok
- libsigrokdecode
- sigrok-cl
- PulseView
- Plugins + Bindings
Examples of Supported Devices

- Logic Analyzers
 - Open Logic Sniffer
 - Saleae Logic/Logic 16
- Oscilloscope
 - Rigol DS1052E
- Mixed-Mode Devices
- Digital Multimeter
- Analog devices like thermometers, hygrometers, light meters, etc
- Full support list available on sigrok wiki
sigrok output format

- Device agnostic and interchangeable
- Simple hexdump to process
- Compressed with zip algorithm
 - Due to most samples being repeats it isn’t rare to see compression rates of 100x
- Traces can be broken into chunks (e.g. logic-* files in archive)
- Common metadata that is useful for clients and protocol decoding
Other sigrok supported outputs

- VCD / Value Change Dump
- Analog (for DMMs and DSOs)
- Comma Separated Values
- GnuPlot
- Various vendor/device specific formats
 - OLS – Open Logic Sniffer Java client output
 - ChronoVu LA8
Logic Analyzer Visited

- **Open Logic Sniffer (50$ USD)**
 - **Pros**
 - Inexpensive + completely OSHW + OSS
 - 100mhz sampling
 - 200mhz DDR mode
 - H/W triggers
 - Run Length Encoding
 - External Clock + Trigger In/Out
 - **Cons**
 - Dead project + questionable design decisions
 - Only 24Kb sample buffer
 - High speed traces are useless without using RLE
Open Logic Sniffer
Logic Analyzers Visited Continued

• Saleae Logic (150$ USD, although clones can be found much cheaper)
 ▫ Cypress FX2 microcontroller which has open source third-party firmware (sigrok-firmware-fx2lafw)

• Saleae Logic 16 ($299 USD)
 ▫ Pros
 • Sampling three channels @ 100 mhz, 6 @ 50mhz, 9 @ 32mhz, 16 @ 16mhz with recent firmware
 ▫ Cons
 • S/W only triggers
 • No H/W buffer, data is piped over the USB 2.0 interface, and random timeouts can end trace early
Saleae Logic 16
Protocol Decoders

- Magically translates the dump into user grokable output
- All the common bus protocols supported
 - I2C/SMBUS
 - I2S
 - SPI
 - CAN
 - 1Wire
 - UART
 - USB
- Side by side decoding of multiple protocols
- Stackable protocol decoders
 - Saves the user from hand decoding underlying protocol layers, e.g., SPI -> AVR ISP, i2c -> Wii Nunchuck, 1wire-link -> 1wire-network
Protocol Decoder Continued

- Protocol decoding can be done in CLI or GUI
- Examples of useful CLI based protocol decoding
 - UART -> UART dump (NMEA 0183 output)
 - `sigrok-cli –i mtk3339_8n1_9600.sr -P
 uart:tx=TX:baudrate=9600 -B uart=tx`
 - i2c -> i2c-filter -> RTC DS1307
 - `sigrok-cli –i rtc_ds1307.sr -P
 i2c:scl=0:sda=1,i2cfilter:address=0x68,ds1307`
- Examples of useful GUI base protocol decoding
 - Multiple signals and protocols side by side
 - NMEA 0183 + Pulse Per Second
 - I2c GPIO Expander + GPIO status
 - SPI UART + UART data
Creating Protocol Decoders

- sigrok protocol dumps are required for any new protocol decoder submissions
 - Split up commands into multiple dumps
 - Document everything that will likely be useful
- Decoders are written in Python so it’s very easy to prototype and implement
- Annotations both in output and protocol forms
 - Allows stacking of PDs, for example i2c output into ds1307
- Decoder design should be scalable and extensible
- Most decoders are and should be written as state machines
FX2 Chipset Devices

- Open Source firmware available from sigrok project
 - Microcontroller firmware programmed every device initialization
- Various low end logic analyzers (aka clones of Logic) use this
- Good enough for 90% of your debugging
 - I2C + SPI + 1Wire busses
 - Once you require over the 24mhz sampling clock that probably requires going a little higher-end
Logic Breakdown + Cypress FX2 chip
In Progress/Planned Features

• Advanced Triggers
 ▫ Serial triggers
 ▫ Multi stage triggers
• Software Triggers
 ▫ Saleae Logic/Logic 16 (plus others) for example supports only SW triggers
 ▫ Allow more dynamic options without hacking Verilog...
• Analog to Digital channel conversion
• Multiple devices per capture
sigrok Bindings + Plugins

- Python bindings (SWIG based)
- collectd plugin
 - Allows reporting of sigrok supported analog devices in an industry standard RRDtool format
 - Simply allows a circular database of data and creating useful graphs from them
 - Use cases would be using a sound level meter or in server room, or monitoring Carbon Monoxide levels near a furnace
collectd Example
collectd Example Continued

LoadPlugin "sigrok"
<Plugin "sigrok">
 LogLevel 3
 <Device "Sound level">
 Driver "cem-dt-885x"
 conn "/dev/ttyUSB1"
 MinimumInterval 1
 </Device>
</Plugin>
PulseView

- First true graphic frontend for sigrok
 - Previous attempts really buggy and limited
- Allows running of traces and visual displaying of samples + protocol decoders
- Vital missing “killer app” for the sigrok project
PulseView continued
Logic Analyzer Hangups

- Continuous samples are a myth...
 - USB 3.0 may hold the hope for the future
- Run Length Encoding is a good solution but there are hold-ups
- Triggers type are important
- External clocking can be very useful
- Chaining with external triggers outs/ins
Weird Solutions

• Run Length Encoding hacks
 ▫ Use more groups than you need
 ▫ Waiting forever is possible...
• Simple microcontrollers/microprocessors as logic analyzers
 ▫ Cypress FX2 + AM335x PRU
• Multiple devices chained or multiple channel groups for different logic levels
Demo

- **sigrok-cli**
 - Example of when using text based output is more useful than the UI interface
 - Audio playback of captured I2S data
 - Protocol Decoding
 - Tracing the ASCII way

- **PulseView**
 - Live capture + display of samples
 - Saleae Logic 16 tracing of data stream to WS2801 RGB LEDS string
Community

• Send us your protocol dumps in sigrok format
 ▫ No protocol too odd or ancient for submission
 ▫ Examples of ones we’d want are DMX512, MIDI, NMEA, CAN bus devices, and various I2C devices
 ▫ First step to a protocol decoder... even if you aren’t the one writing it
• Smoke out bugs and report any that are found
• Contribute to the wiki, post device breakdowns, protocol disassembly, etc
• Free hardware samples to support? (couldn’t hurt to ask 😊)
• As always patches are welcome!
Questions?

- What are the features the users need most?
- Where is sigrok advanced or lacking compared to other OSS projects or even closed-source ones?
References + Links

- http://sigrok.org
- http://sigrok.org/wiki/Supported_hardware
- http://dangerousprototypes.com/docs/Open_Bench_Logic_Sniffer
- http://www.saleae.com/logic16
- http://collectd.org/
Special Thanks

- Uwe Hermann
- Bert Vermeulen
- Joel Holdsworth