
Bluetooth on modern Linux

Szymon Janc
szymon.janc@codecoup.pl

Embedded Linux Conference, San Diego, 2016

Agenda
● Introduction
● Bluetooth technology recap
● Linux Bluetooth stack architecture

○ Linux kernel
○ BlueZ 5 (bluetoothd, obexd) and BlueZ for Android
○ D-Bus interfaces
○ External components integration (PulseAudio, NetworkManager etc)

● Bluetooth Low Energy support
○ D-Bus interfaces for GATT and advertising
○ LE CoC and 6LoWPAN

● Custom solutions
● Tips
● Future work

About me
● Embedded software engineer
● Works with embedded Linux and Android platforms since 2007
● Focused on Local Connectivity (Bluetooth, NFC)
● Open Source contributor

● In 2015 co-founded Codecoup
○ support in Bluetooth, Linux, Android, Open Source, embedded systems
○ Internet of Things projects
○ www.codecoup.pl

http://www.codecoup.pl
http://www.codecoup.pl

Bluetooth
● Short range wireless technology (10-100 meters)
● Operates at 2.4 GHz (IMS band)
● Profiles – definitions of possible applications
● 1.x – 1999 – many problems, including interoperability issues
● 2.0 + EDR – 2004 – Enhanced Data Rate, up to 2.1 Mbits/s
● 2.1 + EDR – 2007 – Secure Simple Pairing
● 3.0 + HS – 2009 – up to 24 Mbits/s (using WiFi)
● 4.0 – 2010 – Low Energy
● 4.1 – 2013 – Further LE improvements
● 4.2 – 2014 – LE security improvements, IoT

Linux Bluetooth features
● Core Specification 4.2 (GAP, L2CAP, RFCOMM, SDP, GATT)

○ Classic Bluetooth (BR/EDR)
○ Bluetooth Smart (Low Energy)

● Audio and media (A2DP, AVRCP)
● Telephony (HFP, HSP)
● Networking (PAN, 6LoWPAN)
● Input device (HID, HoG)
● OBEX (FTP, OPP, MAP, PBAP)
● Others

Linux Bluetooth Stack Architecture (kernel)
● Split between Linux kernel and userspace
● Kernel:

○ Low level protocols (L2CAP, RFCOMM, BNEP, HIDP, etc)
○ Security (SSP, SMP)
○ Hardware drivers
○ Provides socket based interfaces to user space

■ For data (L2CAP, RFCOMM, SCO, HCI)
■ For control (MGMT, HCI, BNEP, HIDP)

○ https://git.kernel.org/cgit/linux/kernel/git/bluetooth/bluetooth-next.git/

Linux Bluetooth Stack Architecture (user space)
● bluetoothd

○ central daemon
○ D-Bus interfaces for UI and other subsystems
○ Reduces exposure to low level details
○ Extendible with plugins (eg neard for NFC, sixaxis for DS3 support)

● obexd
○ daemon for OBEX profiles
○ D-Bus interface for UI
○ Similar architecture to bluetoothd

● Tools
○ bluetoothctl - command line agent
○ btmon - HCI tracer
○ Set of command line tools useful for testing, development and tracing

Linux Bluetooth Stack Architecture

BlueZ for Android
● Subproject in same git tree - android/ subfolder
● Separate bluetoothd daemon
● Designed as drop-in replacement for Android Bluedroid stack

○ Implements Android BT HAL API
○ No D-Bus interfaces

● Share common code with BlueZ
○ Kernel subsystem
○ common components in user space (ATT, GATT, AVRCP, AVDTP, HoG etc)

● Not to be used in GNU/Linux
● PTS qualification instructions provided (partially useful for GNU Linux)

Bluetooth Management interface
● Available since Linux 3.4
● Replaces raw HCI sockets
● Allow userspace to control kernel operations
● Provides mostly Generic Access Profile functionality (adapter settings,

discovery, pairing etc)
● Required by BlueZ 5
● Specification available at doc/mgmt-api.txt in bluez.git
● http://www.bluez.org/the-management-interface/
● btmgmt tool for command line

http://www.bluez.org/the-management-interface/
http://www.bluez.org/the-management-interface/

BlueZ D-Bus API overview
● Use standard D-Bus ObjectManager and Properties interface
● Adapters and remote devices represented as objects

○ /org/bluez/hci0
○ /org/bluez/hci0/dev_00_11_22_33_44_55

● With versioned interfaces (supported profiles, configuration etc)
○ org.bluez.Adapter1, org.bluez.Media1 etc
○ org.bluez.Device1, org.bluez.Network1 etc

● Manager and Agent style interfaces for external components
○ org.bluez.AgentManager1, org.bluez.Agent1

Basic operations (GAP)
● Adapter settings
● Device discovery
● Connection management
● Pairing

● org.bluez.Adapter1 - adapter control
● org.bluez.Device1 - device control
● org.bluez.Agent1 - UI pairing agent

External profiles - org.bluez.ProfileManager1
● Generic interface for implementing external profiles
● profile (a separate process) implements org.bluez.

Profile1 interface
● Register object with org.bluez.ProfileManager1

interface
● Set UUID and SDP details
● Set security level, authentication, role, PSM or

RFCOMM channel etc
● bluetoothd takes care of all tasks needed for

connection creation
● bluetoothd will pass connection (fd and properties)

to external process

Audio
● org.bluez.Media1

○ register local org.bluez.MediaEndpoint1 endpoints

● org.bluez.MediaEndpoint1
○ Allow to select and set endpoint configuration

● org.bluez.MediaTransport1
○ Represents configured stream
○ Allows to acquire FD by external application
○ Provides information like UUID, codec, volume etc.

● A2DP support in PulseAudio 5.0
● No native ALSA support (legacy IPC removed)

○ Legacy audio IPC removed
○ ALSA plugin implementing D-Bus API?

Telephony
● Implemented as external profiles
● Since PulseAudio 6.0
● Since oFono 1.13

○ together with PulseAudio (ofono backend)

● oFono is handling signaling (AT commands)
● PA is handling voice (SCO)
● Simple HSP support in PA

○ Native backend
○ No need for telephony subsystem
○ PA is handling basic AT commands
○ Suitable for desktop voice use cases (Hangouts, Skype etc)

Networking
● Support for PAN profile

○ PANU, NAP and GN roles

● Support in NetworkManager 1.0 (0.9.8.6)
● Support in ConnMan 1.11
● org.bluez.NetworkService1 for tethering

○ On /org/bluez/hciX
○ Register(uuid, bridge)
○ All connections use same bridge

● org.bluez.Network1
○ On /org/bluez/hciX/dev_YY
○ Connect(uuid)
○ Returns network interface name (eg bnep0)

obexd
● Provides similar D-Bus APIs as bluetoothd

○ org.bluez.obex service
○ Agent style API for authorization
○ Versioned interfaces

● Profiles implemented as external profiles (org.bluez.Profile1)
● D-Bus Session Bus
● Provides support for OBEX based profiles

○ File Transfer Profile (FTP)
○ Object Push Profile (OPP)
○ Phone Book Access Profile (PBAP)
○ Message Access Profile (MAP)

D-Bus Advertising (experimental)
● Allows external applications to register Advertising Data
● Support for multiple advertising instances
● org.bluez.LEAdvertisement1

○ Implemented by external application
○ Properties define advertising type and what to include
○ AD is constructed by stack (required data types are always included)

● org.bluez.LEAdvertisingManager1 on /org/bluez/hciX
○ RegisterAdvertisement()
○ UnregisterAdvertisement()

● Currently no support for configuring Scan Responses

D-Bus GATT (experimental)
● Internal plugins (and their APIs) are deprecated
● Replaces profile specific APIs
● Local and remote services share same D-Bus API

○ org.bluez.GattService1
○ org.bluez.GattCharacteristic1
○ org.bluez.GattDescriptor1

● Remote hierarchy under device path
○ /org/bluez/hci0/dev_AA/serviceXX/charYYYY/descriptorZZZZ

● org.bluez.Device1.ServicesResolved=true
indicates discovery has completed

D-Bus GATT (experimental) (II)
● Register local profiles and services

○ org.bluez.GattManager1
■ {Un}RegisterProfile()
■ {Un}RegisterApplication()

● Local profile
○ org.bluez.GattProfile1
○ Bluetoothd will add matched devices to

auto-connect list
● Local service

○ Represented as objects hierarchy
■ Service is root node
■ Characteristic is child of service
■ Descriptor is child of characteristic

○ grouped under Object Manager
○ Objects should not be removed

-> /com/example
 | - org.freedesktop.DBus.ObjectManager
 |
 -> /com/example/service0
 | | - org.freedesktop.DBus.Properties
 | | - org.bluez.GattService1
 | |
 | -> /com/example/service0/char0
 | | - org.freedesktop.DBus.Properties
 | | - org.bluez.GattCharacteristic1
 | |
 | -> /com/example/service0/char1
 | | - org.freedesktop.DBus.Properties
 | | - org.bluez.GattCharacteristic1
 | |
 | -> /com/example/service0/char1/desc0
 | - org.freedesktop.DBus.Properties
 | - org.bluez.GattDescriptor1
 |
 -> /com/example/service1

| - org.freedesktop.DBus.Properties
| - org.bluez.GattService1
|
-> /com/example/service1/char0

 - org.freedesktop.DBus.Properties
 - org.bluez.GattCharacteristic1

LE Connection Oriented Channels
● Available since kernel 3.14
● Easy to use, just like any L2CAP socket
● Set address type to LE and provide PSM number

struct sockaddr_l2 addr;

sk = socket(PF_BLUETOOTH, type, BTPROTO_L2CAP);

/* Bind to local address */
addr.l2_family = AF_BLUETOOTH;
addr.l2_bdaddr = LOCAL_ADDR;
addr.l2_bdaddr_type = BDADDR_LE_PUBLIC;
bind(sk, (struct sockaddr *) &addr, sizeof(addr));

/* Connect to remote */
addr.l2_bdaddr = REMOTE_ADDR;
addr.l2_psm = 0x80;
connect(sk, (struct sockaddr *) &addr, sizeof(addr))

6LoWPAN over BT LE
● Available since kernel 3.16
● No stable interface yet, need to use debugfs
● But simple to use

○ modprobe bluetooth_6lowpan
○ echo “1” > /sys/kernel/debug/bluetooth/6lowpan_enable
○ echo "connect 00:1B:DC:E0:36:BD 1" > /sys/kernel/debug/bluetooth/6lowpan_control
○ bt0 interface is created
○ ping6 -I bt0 fe80::21b:dcff:fee0:36bd

Custom solutions
● Don’t want/need full bluetoothd for your tiny custom app?
● src/shared folder in bluez.git contains LGPL licenced components

○ Used by bluetoothd and other BlueZ tools
○ Library like C API
○ Easy to integrate
○ MGMT, ATT, GATT, crypto, advertising, ECC, GAP, HFP and more
○ No API stability guaranteed

● Ideal for beacons or simple peripheral applications
○ peripheral/ folder for peripheral example (LGPL)

● User channel
○ Gives HCI exclusive access to user space application
○ Sample in tools/eddystone.c (GPL)

Tips
● Use D-Bus API (documentation in doc/)
● Python D-Bus examples in test/
● Don’t use hcitool unless you really know what you are doing

○ Use bluetoothctl or btmgmt instead

● For HCI traces use btmon instead of hcidump
● Stuck with ancient kernel?

○ Use Linux Backports project https://backports.wiki.kernel.org/
○ Example https://bluez-android.github.io/

● Extra kernel configuration via sysfs
○ /sys/class/bluetooth

● Extra kernel informations and experimental features via debugfs
○ /sys/kernel/debug/bluetooth

https://backports.wiki.kernel.org/
http://bluez-android.github.io/

Tips (II)
● Bluetoothd configuration

○ /etc/bluetooth/main.conf (input.conf, network.conf)

● Want to contribute?
○ Join #bluez on irc.freenode.net
○ linux-bluetooth@vger.kernel.org mailing list for patches
○ Read HACKING file

● Reporting a bug?
○ #bluez-users on irc.freenode.net or linux-bluetooth@vger.kernel.org list
○ Provide HCI traces
○ Enable bluetoothd debug logs (‘bluetoothd -n -d -E’ or SIGUSR2)

mailto:linux-bluetooth@vger.kernel.org
mailto:linux-bluetooth@vger.kernel.org
mailto:linux-bluetooth@vger.kernel.org

Future work
● Improving support for dual-mode devices

○ New DeviceLE1 and DeviceBR1 interfaces (RFC)
○ Extending Adapter1 interface

● Management API for BT 6LoWPAN
● Deduplicating BlueZ and BfA code

Questions?

Bluetooth on modern Linux

Szymon Janc
szymon.janc@codecoup.pl

Embedded Linux Conference, San Diego, 2016

