

State of Multimedia in 2010's Embedded Linux Devices

Benjamin Zores

ELCE 2010 - 27th October 2010 - Cambridge, UK

State of Multimedia in 2010's Embedded Linux Devices Presentation Objectives

- Find out about multimedia status on today's embedded devices.
- Help you make the best choices for your next device's design:
 - What is the best hardware for you?
 - Which OS can you run on top of it?
 - How to get the best out of your SoC?
 - How to write embedded applications?
- Find out more about "OpenSource" compatibility.

State of Multimedia in 2010's Embedded Linux Devices About Myself ...

Software Architect at Alcatel-Lucent

- Expert on Open source software.
- 7y experience on various embedded devices design.
- From low-level BSP to global software architecture.

Open Source projects founder, leader and / or contributor for:

- OpenBricks embedded Linux framework.
- GeeXboX embedded multimedia distribution.
- Enna EFL Media Center.
- uShare UPnP and DLNA Media Server.
- MPlayer media player application.

Hardware Selection
Which SoC for which target?

A few simple rules to follow:

- #1: Think about what your customers really need.
- #2: Now think about features and product's lifespan.
- #3: Only by then, think about shopcost.

Always remember:

- A SoC is not only a CPU.
- Define your own criterias.
- The most powerful SoC is not necessarly the good one for your product.

- PS: I'm neither affilitated to any vendor nor related to any ARM shareholder :-)
- PS2: All logos are trademark of their respective owners.

Criteria	Description				
CPU	Main Processing Capabilities (Raw Speed, MHz)				
SMP	Multi-Core Capabilities				
SIMD	Instruction Set Extensions (MMX, SSE, VFP, NEON)				
PSU	Power Consumption and Management				
NET	Networking Capabilities (FE, GbE, WiFi, Bluetooth, 3G)				
CONNECT	Extra Peripherals Connectivity Capabilities (USB, (m)PCI(e))				
STORAGE	Storage Capabilities (NOR, NAND, SDHC, (e)SATA)				
2D	2D Graphics Capabilities				
3D	3D Graphics Capabilities				
VIDEO	Video Decoding/Encoding Capabilities				

MIPS32 SoCs

- Usually low-end CPUs (< 300 MHz)</p>
- Mostly used with wired equipments.
- Legacy Ethernet networking.
- Good for A/V output.
- Focus on 2D and Video processing.
- Usually comes with regular connectivity: USB, SATA ...

SoC Examples

Sigma Designs

MIPS32-based SoC Capabilities

Typical Usage

Set-Top-Box, Bluray / DVD Players

ARM9 SoCs

- Old mobile phones SoCs (< 300 MHz)</p>
- Still in the wild, clocked up to 1.5+ Ghz.
- Mostly used with wired equipments.
- Usually comes with enhanced Eth networking.
- Good for storage: usually USB / PATA / (e)SATA.

SoC Examples

TI OMAP 1, Freescale i.MX2x, Marvell Kirkwood

ARM9-based SoC Capabilities

Typical Usage

NAS, Routers, Network equipments.

ARM11 SoCs

- Mid-end CPUs (400-700 Mhz)
- Mostly seen with 2007+ smartphones.
- Used with both wired and mobile equipments.
- Focus on multimedia with 2D/3D features.
- Focus on networking capabilities.

SoC Examples

TI OMAP 2, Freescale i.MX3x,
 Qualcomm MSM72xx, Broadcom BCMring

ARM11-based SoC Capabilities

Typical Usage

Telecommunication Industry Smartphones and wired phones with low-end multimedia.

ARM Cortex-A8 SoCs

- High-end CPUs (600 Mhz 1 GHz)
- Mostly seen with 2009+ smartphones.
- Designed for mobile equipments only.
- Introduced NEON instructions optimizations.
- Enhanced multimedia 2D / 3D / Video features.
- Mobile-only networking capabilities, lack of Ethernet and external storage.

ARM Cortex-A8 SoC Capabilities

SoC Examples

TI OMAP 3, Freescale i.MX5x, Apple A4, Marvell ARMADA, Qualcomm SnapDragon QSD86xx.

Typical Usage

High-end smartphones, Tablet PCs.

ARM Cortex-A9 SoCs

- Ultra high-end CPUs (700 Mhz 1.5 GHz)
- Mostly seen with Q4 2010+ smartphones.
- Designed for mobile and wired equipments.
- Introduced SMP Optimizations: 1-4 Cores.
- Optional SIMD instructions
- Ultra high-end multimedia 2D/3D/Video features.
- Enhanced networking capabilities, mini-PCIe.

ARM Cortex-A9 SoC Capabilities

SoC Examples

TI OMAP 4, nVidia Tegra 2, Qualcomm SnapDragon MSM86xx and QSD86xx.

Typical Usage

High-end smartphones, Set-Top-Box, Connected TVs.

Intel Embedded ATOM SoCs

- Ultra high-end CPU (1200 MHz)
- Introduced with 2010 Set-Top-Boxes.
- Designed for wired equipments.
- Consequent power consumption (7W).
- Single-Core, x86 instructions set and large SIMD optimizations.
- Ultra high-end multimedia
 2D / 3D / Video features

SoC Examples

Intel CE4100 and CE4200.

Embedded ATOM x86 SoC Capabilities

Typical Usage

Set-Top-Box (Boxee), Connected TVs (GoogleTV).

State of Multimedia

State of Multimedia in 2010's Embedded Linux Devices State of Multimedia - 2D Raster Graphics

2D Raster Graphics

- Usually raw basic kernel framebuffer driver support.
- Occasionally, DirectFB drivers:
 - Limited hardware acceleration for framebuffer.
 - Rarely supported by semiconductor vendors.
- May come with proprietary X11 driver:
 - Basic implementation
 - Restricted to a given X.Org ABI (i.e deal with it!)
 - Why would you need X11 for embedded device ??
- Most of the time implemented through OpenGL|ES.
- Hopefully addressed by application framework, when supported ...

State of Multimedia in 2010's Embedded Linux Devices State of Multimedia - 2D Vector Graphics

2D Vector Graphics

penVG

- Useful for Flash and SVG rendering.
- Though rarely supported at all !!
- Most of the time implemented through OpenVG hardware acceleration framework.
- Mostly rely on proprietary drivers and libs.
- Supported by some application frameworks:
 - Android
 - MeeGo (Qt)
 - Cairo
 - Adobe Flash

State of Multimedia in 2010's Embedded Linux Devices State of Multimedia - 3D Graphics

3D Graphics: OpenGL | ES

- Complete hardware graphics acceleration.
 - Limited by GPU capabilities.
 - Sometimes slower than software rendering.
 - Available through proprietary drivers and libs only.
- Relies on EGL:
 - Usually comes through vendor-specific implementation.
 - And many vendor-specific extensions.
- Applications support heavily varies:
 - Imagination PowerVR SGX is best (only?) supported.
 - No MediaPlayer support GLES as video output yet !!

State of Multimedia in 2010's Embedded Linux Devices State of Multimedia - Software A/V Processing

Audio / VideoSoftware Implementation

- Fully supported by OpenSource software:
 - FFmpeg: multi-codecs audio/video encoding/decoding library
 - Codec specific libs: libvpx, libmad, libvorbis, libfaad, libmpeg2 ...
- Various proprietary software vendors.
- Limited by CPU processing only and wide A/V codecs range support.
- Optimized for VFP / NEON / SSE instructions and multi-core decoding.
- Sometimes requires Integer-specific implementation for audio codecs (many ARM chips lack of FPU).
- May have software patent issues in a few countries.

State of Multimedia in 2010's Embedded Linux Devices State of Multimedia - Hardware A/V Processing

- Audio / Video Hardware (DSP) Implementation
 - 100% CPU offloading.
 - Limited A/V codecs support.
 - Mostly closed-source:
 - Usually vendor-specific drivers and libs.
 - Never hit mainstream Linux.
 - Proprietary firmware, libs and DSP code.
 - Rarely supported by OpenSource projects.
 - Vendor-Specific DSP API (hard to support).
 - Generally available through OpenMAX IL / VAAPI abstraction layer.

State of Multimedia in 2010's Embedded Linux Devices State of Multimedia - Hardware A/V Processing

OpenMAX

- Portable DSP abstraction API.
- Generic implementation from MediaPlayer side.
- Slower than native DSP access, less robust, but more portable.
- Only supported by GStreamer and VLC OpenSource mediaplayers.

VA-API

- FreeDesktop equivalent to OpenMAX, mostly for x86.
- Limited to X.Org video output.
- Better support mostly due to x86 Desktop orientation.

State of Multimedia in 2010's Embedded Linux Devices State of Multimedia

State of 2D / 3D / Video Support

- Theorically fully h/w supported, full CPU offloading.
- Usually relies on proprietary implementation.
- Limited capabilities and support, either due to h/w or s/w implementation.
- Few commitment from semiconductor vendors to provide regular Linux mainstream support.
- Possible h/w video decoding but semi-s/w rendering.
- Only 100% usable on industry's mobile "standard" OS:
 - Google Android
 - Maybe Nokia / Intel MeeGo some day ?

The Underlying OS

State of Multimedia in 2010's Embedded Linux Devices The Underlying OS

Half-Commercial OS:

- WindRiver, Montavista ...
- Android, MeeGo, Ubuntu ...

Homebrew OS:

- OpenEmbedded, OpenBricks
- OpenWrt, Buildroot
- • •

Linaro Foundation

 Not really an OS but helps in making your devices works with Open Source Software.

WIND RIVER

State of Multimedia in 2010's Embedded Linux Devices The Underlying OS

Half-Commercial OS:

- Based on OSS but with deep commercial tights.
- Take it the way it is:
 - Follow the project / product's philosophy.
 - Follow its lifecycle and roadmap.
 - Hard to change the overall software architecture.
 - Adapt your apps and skins to existing framework.

PROS:

- Potentially impressive Time-To-Market (TTM) and Long-Term-Support (LTS)
- Good for rapid product deployment and basic applications development.

CONS:

- May not be adapted to custom and very specific apps.
- Vendor roadmap follow-up may imply OS upgrades and API changes.

State of Multimedia in 2010's Embedded Linux Devices The Underlying OS

Homebrew OS:

- Fully based on OSS with barely no support.
- Take it as your next design's framework:
 - Fine-tuning for on-demand custom OS creation.
 - You're on your own: fix it, debug it, adapt it.
 - Easy to create the software architecture you want.
 - Pray for your whole hardware to be fully supported in upstream Linux kernel :-(

PROS:

- Complete control over your product's global software roadmap
- Good for autonomous system and application deployment.

CONS:

- You're on your own from the very beginning to the end (no or very
- Security threat and fixes workload

Embedded Applicative Framework

State of Multimedia in 2010's Embedded Linux Devices Embedded Applicative Framework

- How to write applications and user interfaces?
 - Google's Android native applications framework.
 - Nokia's Qt (MeeGo, KDE ...)
 - GTK+ (Gnome)
 - Enlightenment Foundation Libraries (EFL)
 - Simple Direct Media Layer (SDL)
 - Web Technologies

State of Multimedia in 2010's Embedded Linux Devices Embedded Applicative Framework

• Questions you may ask yourself:

- Has it to be a tradeoff between code efficiency and programming convenience?
- Native compiled code or interpreted one ?
- Is my code meant to run on multiple devices?
- MVC Approach: should I distinct middleware / core from user interface?
- SDK or Open Source collaboration: what if I want to gather developers around my project?

State of Multimedia in 2010's Embedded Linux Devices Embedded Applicative Framework (based on personal feedback)

	Android	Qt	GTK+	EFL	SDL	Web
Language	Java	C++	С	С	С	JS, CSS, HTML
Maturity	Average	Good	Good	Weak	Good	Average
Portability	Weak	Good	Average	Average	Good	Average
Footprint	N.A	Weak	Average	Good	Good	Good
Performance	Good	Average	Average	Good	Good	Weak
System-Wide	Good	Good	Weak	Average	Weak	Weak
Community Followers	Good	Good	Average	Weak	Average	Good
Multimedia Integration	Good	Good	Average	Average	Average	Good
OpenGL ES	Yes	Yes	No	Yes	No	No
OpenVG	Yes	Yes	No	No	No	No
MVC Mode	Yes	Yes	No	Yes	No	Yes

Conclusion

State of Multimedia in 2010's Embedded Linux Devices Designing your new device: Questions to be raised ...

• Questions to be raised:

- Which features do you really need?
- What is your project's expected lifespan?
- Do you target TTM or LTS?
- Do you need complete code mastership?
- Do you need SDK / external apps openess ?
- Is regular upstream Linux support mandatory for your application?

State of Multimedia in 2010's Embedded Linux Devices Conclusion - State of Embedded Linux

Multimedia on embedded Linux rocks!

- Maybe even more than on desktop Linux ...
- But unfortunately mostly relies on 100% proprietary software.
- Linux now supports so many SoCs ...
 - But h/w vendors rarely contribute upstream.
 - Mostly comes with Android-only software.
 - Usually provided under binary form only
 - You have to stick to first (and last) BSP release.
 - Need to sponsor MeeGo / Linaro-like initiatives to upstream SoC support on Linux.

State of Multimedia in 2010's Embedded Linux Devices Annex - Some references

- DirectFB: http://directfb.org/
- OpenVG: http://www.khronos.org/openvg/
- OpenGL | ES: http://www.khronos.org/opengles/
- OpenMAX: http://www.khronos.org/openmax/
- VA-API: http://www.freedesktop.org/wiki/Software/vaapi
- FFmpeg: http://www.ffmpeg.org/
- SDL: http://www.libsdl.org/
- GTK+: http://www.gtk.org/
- Qt: http://qt.nokia.com/
- EFL: http://www.enlightenment.org/

State of Multimedia in 2010's Embedded Linux Devices Annex - Some references

- Windriver: http://www.windriver.com/
- MontaVista: http://www.mvista.com/
- Android: http://www.android.com/
- MeeGo: http://www.meego.com/
- Ubuntu: http://www.ubuntu.com/
- OpenEmbedded: http://wiki.openembedded.org/index.php/Main_Page
- OpenBricks: http://www.openbricks.org/
- OpenWRT: http://www.openwrt.org/
- Buildroot: http://buildroot.uclibc.org/
- Linaro: http://www.linaro.org/