
Software Architecture Division (SARD)

Sony India Software Center Pvt Ltd

Copyright 2013 Sony Corporation

AGENDA

22

February

2013

2

• Introduction

• XIP (Execute In Place)

• AXFS - Overview

• AXFS - Profiling

• AXFS – Implementation

• Byte Tables

• Image Format

• Details

• AXFS – Performance

• Other tuning tools

• Launch performance

• Flash footprint.

• Memory footprint

• Summary

BACKGROUND

22

February

2013

3

• We recently pushed Advanced XIP File System (AXFS) to 3.4-LTSI

• We think AXFS is more powerful than its counterparts (CRAMFS,
SQUASHFS) in many aspects.

• We think AXFS deserves more wider usage than it has currently.

• This talk is about giving an insight into AXFS.

• So more people can start to playing with it and using it more in
their products.

• And make it even better!

INTRODUCTION

22

February

2013

4

• Cost, power, size and other constraints of embedded systems make

compressed and read only file systems a good choice as a rootFS

• Commonly used root file system for embedded systems such as
CRAMFS and SQUASHFS are read only and support compression.

• SQUASHFS supports compression of files in the file system.

• CRAMFS supports execute in place as well as compression of the
files.

INTRODUCTION (cont)

22

February

2013

5

• CRAMFS supports execute in place and compression at file

granularity.

• i.e. CRAMFS file can either be a execute in place file or a
compressed file.

• AXFS is a read only file system which supports execute in place at a
page level granularity.

• i.e. Each page in an AXFS file can either be made a compressed
page or it can be a execute in place page.

• This presentation gives an insight into design and implementation
of AXFS.

INTRODUCTION (cont)

22

February

2013

6

• We will start with introduction to the concept of eXecute In Place

(XIP).

• We will look into the advantages and disadvantages of the XIP
approach.

• We will look into AXFS file system image format.

• We will then take a short dive into the AXFS source code.

XIP - Overview

22

February

2013

7

• XIP is a short form for eXecute In Place.

• Only possible on memory map-able devices. Such as NOR, ROM,
RAM, etc.

• Device access speed of devices should be comparable to system
RAM speed.

• The process‟s virtual memory is made to directly map to physical
address of XIP image on media.

• No need to load code pages from media to page cache.

XIP – Overview (cont)

22

February

2013

8

File System Image

System RAM

P
ro

ce
ss V

M
 m

a
p

1. Load the code and data
from FS image

2. Map the pages

Free page frame

Occupied page frame

XIP – Overview (cont)

22

February

2013

9

File System Image

System RAM

P
ro

ce
ss V

M
 m

a
p

1. Load only the data
from FS image 2. Map the code

directly

Free page frame

Occupied page frame

XIP - PROS

22

February

2013

10

• Performance :

• XIP reduces boot and application launch time.

• XIP is faster by virtue of saving the load time of the page from
secondary memory.

• Cost :

• Reduces requirement for system RAM.

• Reduces power consumption by requiring less system RAM.

• Helps in reducing cost.

XIP - CONS

22

February

2013

11

• Slow for hotspots :

•NOR flash usually used as memory device for XIP is slower than
system RAM.

• XIP not suitable for code which are hotspots in the application
or system.

• Extra pass :

• Needs a profiling pass to optimally use XIP.

AXFS - OVERVIEW

22

February

2013

12

• AXFS is a 64 bit, big endian and read only file system.

• Useful for small systems where memory and other resource are
scarce.

• Allows XIP at page granularity.

• Supports compression in blocks of size 4KB to 4GB.

• Can mount directly from MTD device.

AXFS - OVERVIEW (cont)

22

February

2013

13

• AXFS allows the image to be mounted from two devices.

• This allows the XIP part of image to be on NOR flash and
compressed part on the NAND.

• This device spanning is possible only if first device is a memory
map-able device.

• This feature helps make system more economical.

AXFS image

/dev/sda
[Block]

Kernel

/dev/mtd1
[NOR]

/dev/mtd2
[NAND]

AXFS image

Kernel

PASS - I

AXFS - PROFILING

22

February

2013

14

Non XIP AXFS Image

Embedded Board

Typical use cases

Profile data in /proc/axfs/ mkfs.axfs XIP AXFS Image

PASS - II

Run Typical application use case
with non XIP AXFS image

Feed profiling data and Non XIP
rootfs to image builder to get XIP

AXFS image

mkfs.axfs
Directory

(RootFS OR any other)

PASS - I

AXFS - PROFILING

22

February

2013

15

Non XIP AXFS Image

Embedded Board

Typical use cases

Profile data in /proc/axfs/ mkfs.axfs XIP AXFS Image

PASS - II

Run Typical application use case
with non XIP AXFS image

Feed profiling data and Non XIP
rootfs to image builder to get XIP

AXFS image

mkfs.axfs
Directory

(RootFS OR any other)

Step 1.

 $ mkfs.axfs dir/ output.image

PASS - I

AXFS - PROFILING

22

February

2013

16

Non XIP AXFS Image

Embedded Board

Typical use cases

Profile data in /proc/axfs/ mkfs.axfs XIP AXFS Image

PASS - II

Run Typical application use case
with non XIP AXFS image

Feed profiling data and Non XIP
rootfs to image builder to get XIP

AXFS image

mkfs.axfs
Directory

(RootFS OR any other)

Step 2.

 Run the typical application test cases.

PASS - I

AXFS - PROFILING

22

February

2013

17

Non XIP AXFS Image

Embedded Board

Typical use cases

Profile data in /proc/axfs/ mkfs.axfs XIP AXFS Image

PASS - II

Run Typical application use case
with non XIP AXFS image

Feed profiling data and Non XIP
rootfs to image builder to get XIP

AXFS image

mkfs.axfs
Directory

(RootFS OR any other)

Step 3.

 $mkfs.axfs -i profile.data dir/ output.axip.img

AXFS - PROFILING (cont)

22

February

2013

18

• Pages that should be XIP can be found by profiling running

application for executable pages.

• Profiling should cover all the important applications and there use
cases.

• AXFS contains a built-in profiler for profiling applications.

• CONFIG_AXFS_PROFILING enables the inbuilt profiler.

• The log created by profiling pass is fed to the image builder.

• The built-in profiler should be compiled out after the image is

created.

AXFS – BYTE TABLES

22

February

2013

19

• Byte Table are the mechanism which allows AXFS very less overhead
in supporting 64 bit offsets.

• Each Byte Table contains only that many bytes required to hold the

maximum value of a number.

• Number of bytes used in the Byte Table is the depth of a Byte
Table.

• So, Number less than 256 can be represented with Byte Table of
depth 1.

• Similarly, numbers less than, say, 500 need Byte Table of depth 2.

AXFS – BYTE TABLES (cont)

22

February

2013

20

• Byte Tables is the key scheme which allows AXFS images sizes to be
small and yet be a 64 bit file systems.

• Following is the code snippet for implementing Byte Tables in AXFS.

static inline u64 axfs_bytetable_stitch(u8 depth, u8 *table, u64 index)
{
 ….

 for (i = 0; i < depth; i++) {
 j = index * depth + i;
 bits = 8 * (depth - i - 1);
 byte = table[j];
 output += byte << bits;
 }
 return output;
}

AXFS – IMAGE FORMAT

22

February

2013

21

Region Descriptor

Super Block

Region Descriptor

Region Descriptor

Region Descriptor

Region : File names

Region : I-node array

Region : Compressed Nodes

Region : XIP Nodes

AXFS – IMAGE FORMAT (cont)

22

February

2013

22

• In AXFS terminology a region is a contiguous segment of file

system image that contains data.

• Region descriptors stores the location of a region in the file system
image and also its attributes.

• Attributes stored in region descriptor include size of region, whether
the region is compressed or XIP.

• Attributes store the depth and the length of Byte Table if the region
contains Byte Table.

AXFS – IMAGE FORMAT (cont)

22

February

2013

23

• Following is the on-media representation of region descriptor.

 struct axfs_region_desc_onmedia
{
 u64 fsoffset;
 u64 size;
 u64 compressed_size;
 u64 max_index;
 u8 table_byte_depth;
 u8 incore;
};

• „fsoffset‟ and „size‟ is the offset from starting of the file system

image and the size of the region.

• „table_byte_depth‟ and „max_index‟ are depth and length of the
Byte Table.

AXFS – IMAGE FORMAT (cont)

22

February

2013

24

• Regions contain data as well as meta-data.

• Most of the meta-data is contained in regions containing Byte Table.

• Regions which contain data are “XIP region”, “Compressed region”
and “Byte aligned region”.

• “XIP region” and “Compressed region” contains XIP and
compressed pages respectively.

• “Byte aligned region” contains data which do not compress and so
is stored uncompressed.

• The data/pages from files are stored in „nodes‟ Which usually is
4KiB in size.

• Nodes have type. E.g. XIP type of nodes, compressed nodes or byte
aligned type of nodes.

AXFS – IMAGE FORMAT (cont)

22

February

2013

25

• Following is the snippet of the AXFS on-media super block.

struct axfs_super_onmedia {
 .…
 __be64 blocks; /* number of nodes in fs */
 __be64 mmap_size; /* size of the memory mapped part of image */
 __be64 strings; /* offset to strings region descriptor */
 __be64 xip; /* offset to xip region descriptor */
 __be64 byte_aligned; /* offset to the byte aligned region desc */
 __be64 compressed; /* offset to the compressed region desc */
 ….
 __be64 cblock_offset; /* offset to cblock offset region desc */
 __be64 inode_file_size; /* offset to inode file size desc */
 __be64 inode_name_offset; /* offset to inode num_entries region desc */
 __be64 inode_num_entries; /* offset to inode num_entries region desc */
 .…
};

AXFS – IMAGE FORMAT (cont)

22

February

2013

26

• Following are some of the important meta-data regions.

• “Strings region”
• “Node index region”
• “Node type region”
• “inode array index region”

• “Strings region” contains name of the files and is the only meta-
data region which is not Byte Table.

• Offset to a filename in the “Strings region” is stored in “inode name
offset region”

• “inode array index region” contains the offset into “Node index
region” for each page of the file.

AXFS – IMAGE FORMAT (cont)

22

February

2013

27

• Following are the access functions for “Strings” and “inode
array index ” meta-data regions.

char *axfs_get_inode_name(struct axfs_super *sbi, u64 index)
{
 u64 ofs = axfs_get_inode_name_offset(sbi, index);
 u8 *virt = sbi->strings.virt_addr;

 return (char *)(ofs + virt);
}

u64 axfs_get_inode_array_index(struct axfs_super *sbi, u64 index)
{
 u64 depth = sbi->inode_array_index.table_byte_depth;
 u8 *vaddr = (u8 *) sbi->inode_array_index.virt_addr;

 return axfs_bytetable_stitch(depth, vaddr, index);
}

AXFS – IMAGE FORMAT (cont)

22

February

2013

28

• “Node type region” and “Node index region” contains the type of

the node (XIP, compressed or Byte aligned) and index of the data of
the node.

• This „index‟ is an index into one of the data nodes.

• The type of the node determines which „data node‟ is it an index
into.

• „index‟ for XIP type of node is the page offset into XIP region.

• „index‟ for Byte aligned type of node is offset into a Byte Table
region which contains offset into Byte aligned region.

• „index‟ for Compressed node type is offset into two separate Byte
Table region.

AXFS – IMAGE FORMAT (cont)

22

February

2013

29

• The two Byte Table region are “cblock offset region” “cnode offset

region” .

• cblock is a block is a block of data that is compressed.

• The uncompressed size of all cblock is same for a file system image
and is set by image builder.

• cnode is a data node that will be compressed .

• One or more cnode are combined and then compressed. This
compressed node are called cblocks.

AXFS – IMAGE FORMAT (cont)

22

February

2013

30

• cblocks are stored in “compressed region”

• The offset from “cblock offset region” points to cblock in the
compressed region.

• The cblock is then uncompressed in system RAM.

• Offset from “cnode offset region” points to the location of cnode in
the uncompressed cblock.

AXFS – IMAGE FORMAT (cont)

22

February

2013

31

• Following is the simplified code snippet for using the node index to

find the actual data location in a compressed region.

….
 node_index = axfs_get_node_index(sbi, array_index);
 node_type = axfs_get_node_type(sbi, array_index);

 if (node_type == Compressed) {
 cnode_offset = axfs_get_cnode_offset(sbi, node_index);
 cnode_index = axfs_get_cnode_index(sbi, node_index);
 ofs = axfs_get_cblock_offset(sbi, cnode_index);
 len = axfs_get_cblock_offset(sbi, cnode_index + 1);
 len -= ofs;
 axfs_copy_data(sb, cblk1, &(sbi->compressed), ofs, len);
 axfs_uncompress_block(cblk0, cblk_size, cblk1, len);
 len = cblk_size - cnode_offset;
 src = (void *)((unsigned long)cblk0 + cnode_offset);
 memcpy(pgdata, src, len);
 } else if (node_type == Byte_Aligned) {
….

AXFS – PERFORMANCE

22

February

2013

32

• Environment :
• NEC uPD35001 System-on-chip Evaluation board (NE1-TB)
 (Also known as NaviEngine board)

• CPU: ARM11v6 MPCore
• SMP with 4 cores.
• Memory : Used 20MB (mem= 20M on kernel command line)
• L1 I-Cache : 32 KB
• L1 D-Cache : 32 KB
• L2 Cache : Not present.
• Kernel : 3.0
• NOR flash: 64MB

• Connected to 16bit AHB (133.33Mhz)
• Spansion S29GL512N11TFI02
 (supports 16-byte page mode read)

• GCC : 4.5.1 version
• File system mounted from NOR Flash.

AXFS – PERFORMANCE

22

February

2013

33

• Performance Parameters :

• Application launch (boot) times.

• Total Flash memory usage.

• System RAM footprint size.

AXFS + OTHER TOOLS

22

February

2013

34

• We can use other tools or technique in combination with AXFS for
further performance improvement.

• One of the techniques tried was about improving code locality.

• Implemented a tool for improving locality.

• Tool records calling order of functions in a program.

• Then a host tool generates a linker script to place functions called
together, near each other.

AXFS + OTHER TOOLS (Cont)

22

February

2013

35

• Improving locality reduces the number of page faults when the
program is run.

• The reduction in page faults :
• Improves program/application speed.
• Reduces system RAM used by program/application.

PASS - I

TOOL FOR LOCALITY IMPROVEMENT

22

February

2013

36

Embedded Board

Running
Application

Linker script
generator

PASS - II

Log of

Function’s

calling order

Locality
Improvement tool

 3. Attach to
process

Application

1. gcc –f instrument_function

2. Run

 4. Trap
functions to

output
calling order

Application source
code

Application source
code Linker script

Embedded Board

Running
Application

Application

6. Run

5. Re-build

AXFS – PERFORMANCE

22

February

2013

37

• Application used :

• A dummy program which simulates large number of page loading
during launch.

• Calls 500 functions in pseudo-random order.
• Pseudo-random numbers : Numbers that produce same
sequence with same initial state (seed).

• Each function’s size is 1600 bytes.
• Most instruction are NOPs
• Few of instructions are for memory access

• This application used as init process of system.

AXFS – PERFORMANCE

22

February

2013

38

• Application used (cont):

• We embed calls to save the current value of a clock into a buffer
along with a string.

• The calls are embedded just before kernel calls init process and
just after finishing the execution of 500 functions.

• We measure the difference of clock time between two calls.

AXFS – PERFORMANCE
(Application launch times)

22

February

2013

39

• Measurement Plan :

• Have four AXFS images.
• AXFS compressed image.
• AXFS XIP image.
• Code locality improved binary on AXFS compressed image.
• Code locality improved binary on AXFS XIP image.

• Application launch time is difference of the clock values stored:

• Just before application launch and
• just after finishing executing 500 dummy functions.

• We measure and compare launch time for all four FS images.

AXFS – PERFORMANCE
(Application launch times)

22

February

2013

40

L
a
u

n
c
h

 t
im

e
 (

m
il
li
s
e
c
o

n
d

s
)

0

200

400

600

800

1000

1200

1400

Compressed
AXFS

XIP AXFS Locality
improved +

AXFS
compressed

Locality
improved +
AXFS XIP

1070.4 ms

514 ms 515 ms

1229 ms

AXFS – PERFORMANCE
(Total Flash memory usage)

22

February

2013

41

• Measurement Plan :

• For the following four AXFS images:
• AXFS compressed image.
• AXFS XIP image.
• Code locality improved binary on AXFS compressed image.
• Code locality improved binary on AXFS XIP image.

• Total Flash memory usage is size of the image.

• We measure and compare size of the images.

AXFS – PERFORMANCE
(Total Flash memory usage)

22

February

2013

42

F
S

 I
m

a
g

e
 s

iz
e
 (

K
iB

)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Compressed
AXFS

XIP AXFS Locality
improved +

AXFS
compressed

Locality
improved +
AXFS XIP

15811 KiB

18271 KiB
17530 KiB

16228 KiB

AXFS – PERFORMANCE
(System RAM footprint)

22

February

2013

43

•Measurement Plan :

• For the following four AXFS images:
• AXFS compressed image.
• AXFS XIP image.
• Code locality improved binary on AXFS compressed image.
• Code locality improved binary on AXFS XIP image.

• System RAM footprint (Actual definition):

• Total memory used in the system by the running the
application.

• System RAM footprint (What we mean here):

• Total memory used in the system by virtue of running the
application.

AXFS – PERFORMANCE
(System RAM footprint)

22

February

2013

44

• We measure total memory used in the system while running our
application.

• Fair , as our application is the only process created in the system
while it runs.

AXFS – PERFORMANCE
(System RAM footprint)

22

February

2013

45

T
o

ta
l

m
e
m

o
r
y
 u

s
e
d

 (
K

iB
)

0

2000

4000

6000

8000

10000

12000

Compressed
AXFS

XIP AXFS Locality
improved +

AXFS
compressed

Locality
improved +
AXFS XIP

10859 KiB

5145 KiB

8536 KiB

5305 KiB

Summary

22

February

2013

46

• Key point of AXFS : It allows XIP at page granularity.

• XIP AXFS requires a profiling pass.

• AXFS image can span multiple devices.

• Can mount on MTD layer instead of block layer.

• Suitable for code mostly used during boot / application
launch.

• Not suitable for hotspots in the system.

Questions ?

22

February

2013

47

Thank You.

22

February

2013

48

“Sony” or “make.believe” is a registered trademark of Sony Corporation.

Names of Sony products and services are the registered trademarks and/or trademarks of Sony Corporation or its Group companies.

Other company names and product names are the registered trademarks and/or trademarks of the respective companies.

