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• We recently pushed Advanced XIP File System (AXFS) to 3.4-LTSI 
  
• We think AXFS is more powerful than its counterparts (CRAMFS, 
SQUASHFS) in many aspects. 
 

• We think AXFS deserves more wider usage than it has currently. 
 

• This talk is about giving an insight into AXFS. 
 

• So more people can start to playing with it and using it more in 
their products. 
 

• And make it even better! 
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• Cost, power, size and other constraints of embedded systems make 

compressed and read only file systems a good choice as a rootFS 
 

• Commonly used root file system for embedded systems such as 
CRAMFS and SQUASHFS are read only and support compression. 
 

• SQUASHFS supports compression of files in the file system. 
  
• CRAMFS supports execute in place as well as compression of the 
files. 
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• CRAMFS supports execute in place and compression at file 

granularity. 
 

•  i.e. CRAMFS file can either be a execute in place file or a 
compressed file.   
 

• AXFS is a read only file system which supports execute in place at a 
page level granularity. 
 

• i.e. Each page in an AXFS file can either be made a compressed 
page or it can be a execute in place page. 
 

• This presentation gives an insight into design and implementation 
of AXFS. 
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• We will start with introduction to the concept of eXecute In Place 

(XIP). 
 

• We will look into the advantages and disadvantages of the XIP 
approach. 
 

• We will look into AXFS file system image format.  
 

• We will then take a short dive into the AXFS source code. 
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• XIP is a short form for eXecute In Place. 

 
• Only possible on memory map-able devices. Such as NOR, ROM, 
RAM, etc. 
 
• Device access speed of devices should be comparable to system 
RAM speed. 
 
• The process‟s virtual memory is made to directly map to physical  
address of XIP image on media. 
 
• No need to load code pages from media to page cache. 
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• Performance : 

• XIP reduces boot and application launch time. 

 
• XIP is faster by virtue of saving the load time of the page from 
secondary memory. 

 
• Cost : 

• Reduces requirement for system RAM. 
 
• Reduces power consumption by requiring less system RAM. 
 
• Helps in reducing cost. 
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• Slow for hotspots :  

•NOR flash usually used as memory device for XIP is slower than 
system RAM. 
 
• XIP not suitable for code which are hotspots in the application 
or system. 

 
• Extra pass : 

• Needs a profiling pass to optimally use XIP. 
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• AXFS is a 64 bit, big endian and read only file system. 

 
• Useful for small systems where memory and other resource are 
scarce. 
 

• Allows XIP at page granularity. 
 

• Supports compression in blocks of size 4KB to 4GB. 
 

• Can mount directly from MTD device. 
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• AXFS allows the image to be mounted from two devices. 

 
• This allows  the XIP part of image to be on NOR flash and 
compressed part on the NAND. 
 

• This device spanning is possible only if first device is a memory 
map-able device. 
 

• This feature helps make system more economical. 
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• Pages that should be XIP can be found by profiling running 

application for executable pages. 
 

• Profiling should cover all the important applications and there use 
cases. 
 

• AXFS contains a built-in profiler for profiling applications. 
 

• CONFIG_AXFS_PROFILING enables the inbuilt profiler. 
 

• The log created by profiling pass is fed to the image builder. 
 

• The built-in profiler should be compiled out after the image is 

created.  
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• Byte Table are the mechanism which allows AXFS very less overhead 
in supporting 64 bit offsets. 
 

•  Each Byte Table contains only that many bytes required to hold the 

maximum value of a number. 
 

• Number of bytes used in the Byte Table is the depth of a Byte 
Table. 
 

• So, Number less than 256 can be represented with Byte Table of 
depth 1. 
 

• Similarly, numbers less than, say, 500 need Byte Table of depth 2. 
 

 



AXFS – BYTE TABLES (cont) 

22 

February 

2013 

20 

 
• Byte Tables is the key scheme which allows AXFS images sizes to be 
small and yet be a 64 bit file systems. 
 

• Following is the code snippet for implementing Byte Tables in AXFS. 

 

static inline u64 axfs_bytetable_stitch(u8 depth, u8 *table, u64 index) 
{ 
    …. 
 
    for (i = 0; i < depth; i++) { 
        j = index * depth + i; 
        bits = 8 * (depth - i - 1); 
        byte = table[j]; 
        output += byte << bits; 
    } 
    return output; 
} 
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• In AXFS terminology a region is a contiguous segment of file 

system image that contains data. 
 

• Region descriptors stores the location of a region in the file system 
image and also its attributes. 
 

• Attributes stored in region descriptor include size of region, whether 
the region is compressed or XIP. 
 

• Attributes store the depth and the length of Byte Table if the region 
contains Byte Table. 
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• Following is the on-media representation of region descriptor. 

 struct axfs_region_desc_onmedia 
{ 
    u64 fsoffset; 
    u64 size; 
    u64 compressed_size; 
    u64 max_index; 
    u8 table_byte_depth; 
    u8 incore; 
};  

 
• „fsoffset‟ and „size‟ is the offset from starting of the file system 

image and the size of the region. 
 

• „table_byte_depth‟ and „max_index‟ are depth and length of the 
Byte Table. 
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• Regions contain data as well as meta-data. 

 
• Most of the meta-data is contained in regions containing Byte Table. 
 

• Regions which contain data are “XIP region”, “Compressed region” 
and “Byte aligned region”. 
 

• “XIP region” and “Compressed region” contains XIP and 
compressed pages respectively. 
 

• “Byte aligned region” contains data which do not compress and so 
is stored uncompressed. 
 

• The data/pages from files are stored in „nodes‟ Which usually is 
4KiB in size. 
 

• Nodes have type. E.g. XIP type of nodes, compressed nodes or byte 
aligned type of nodes. 
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• Following is the snippet of the AXFS on-media  super block. 

 
  

struct axfs_super_onmedia { 
    .… 
    __be64 blocks;              /* number of nodes in fs */ 
    __be64 mmap_size;       /* size of the memory mapped part of image */ 
    __be64 strings;             /* offset to strings region descriptor */ 
    __be64 xip;                  /* offset to xip region descriptor */ 
    __be64 byte_aligned;    /* offset to the byte aligned region desc */ 
    __be64 compressed;     /* offset to the compressed region desc */ 
    …. 
    __be64 cblock_offset;         /* offset to cblock offset region desc */ 
    __be64 inode_file_size;       /* offset to inode file size desc */ 
    __be64 inode_name_offset; /* offset to inode num_entries region desc */ 
    __be64 inode_num_entries; /* offset to inode num_entries region desc */ 
   .… 
}; 
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• Following are some of the important meta-data regions. 

• “Strings region” 
• “Node index region” 
• “Node type region” 
• “inode array index region” 
 

• “Strings region” contains name of the files and is the only meta-
data region which is not Byte Table. 
 

• Offset to a filename in the “Strings region” is stored in “inode name 
offset region” 
 

• “inode array index region”  contains the offset into “Node index 
region” for each page of the file. 
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• Following are the access functions for “Strings” and “inode 
array index ” meta-data regions. 

  
 

 

char *axfs_get_inode_name(struct axfs_super *sbi, u64 index) 
{ 
    u64 ofs = axfs_get_inode_name_offset(sbi, index); 
    u8 *virt = sbi->strings.virt_addr; 
 
    return (char *)(ofs + virt); 
} 

u64 axfs_get_inode_array_index(struct axfs_super *sbi, u64 index) 
{ 
    u64 depth = sbi->inode_array_index.table_byte_depth; 
    u8 *vaddr = (u8 *) sbi->inode_array_index.virt_addr; 
 
    return axfs_bytetable_stitch(depth, vaddr, index); 
} 
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• “Node type region” and “Node index region” contains the type of 

the node (XIP, compressed or Byte aligned)  and index of the data of 
the node. 
 

• This „index‟ is an index into one of the data nodes. 
 

• The type of the node determines which „data node‟ is it an index 
into. 
 

• „index‟ for XIP type of node is the page offset into XIP region. 
 

• „index‟ for Byte aligned type of node is offset into a Byte Table 
region which contains offset into Byte aligned region. 
 

• „index‟  for Compressed node type is offset into two separate Byte 
Table region. 
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• The two Byte Table region are “cblock offset region” “cnode offset 

region” . 
 

• cblock is a block is a block of data that is compressed. 
 

• The uncompressed size of all cblock is same for a file system image 
and is set by image builder. 
 

• cnode is a data node that will be compressed . 
 

• One or more cnode are combined and then compressed. This 
compressed node are called cblocks.  
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• cblocks are stored in “compressed region” 
 

• The offset from “cblock offset region” points to cblock in the 
compressed region. 
 

• The cblock is then uncompressed in system RAM. 
 

• Offset from “cnode offset region”  points to the location of cnode in 
the uncompressed cblock. 
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• Following is the simplified code snippet for using the node index to 

find the actual data location in a compressed region. 
  
 

 

…. 
 node_index = axfs_get_node_index(sbi, array_index); 
 node_type = axfs_get_node_type(sbi, array_index); 
 
 if (node_type == Compressed) { 
        cnode_offset = axfs_get_cnode_offset(sbi, node_index); 
        cnode_index = axfs_get_cnode_index(sbi, node_index); 
        ofs = axfs_get_cblock_offset(sbi, cnode_index); 
        len = axfs_get_cblock_offset(sbi, cnode_index + 1); 
        len -= ofs; 
        axfs_copy_data(sb, cblk1, &(sbi->compressed), ofs, len); 
        axfs_uncompress_block(cblk0, cblk_size, cblk1, len); 
        len = cblk_size - cnode_offset; 
        src = (void *)((unsigned long)cblk0 + cnode_offset); 
        memcpy(pgdata, src, len); 
 } else if (node_type == Byte_Aligned) { 
…. 
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• Environment :  
• NEC uPD35001 System-on-chip Evaluation board (NE1-TB) 
  (Also known as NaviEngine board) 

• CPU: ARM11v6 MPCore 
• SMP with 4 cores. 
• Memory : Used 20MB (mem= 20M on kernel command line) 
• L1 I-Cache : 32 KB 
• L1 D-Cache : 32 KB 
• L2 Cache : Not present. 
• Kernel : 3.0 
• NOR flash: 64MB 

•   Connected to 16bit AHB (133.33Mhz) 
•   Spansion S29GL512N11TFI02  
    (supports 16-byte page mode read) 

• GCC : 4.5.1 version 
• File system mounted from NOR Flash. 
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• Performance Parameters : 
 

• Application launch (boot) times. 
 

• Total Flash memory usage. 
 

• System RAM footprint size. 
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• We can use other tools or technique in combination with AXFS for  
further performance  improvement. 
 

• One of the techniques tried was about improving code locality. 
 

• Implemented a tool for improving locality.  
 

• Tool records calling order of functions in a program. 
 

• Then a host tool generates a linker script to place functions called 
together, near each other. 
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• Improving locality reduces the number of page faults when the 
program is run. 
 

• The reduction in page faults : 
• Improves program/application speed. 
• Reduces system RAM used by program/application. 
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• Application used :  
 
• A dummy program which simulates large number of page loading 
during launch. 
 

• Calls 500 functions in pseudo-random order. 
• Pseudo-random numbers : Numbers that produce same 
sequence with same initial state (seed). 
 

• Each function’s size is 1600 bytes. 
• Most instruction are NOPs 
• Few of instructions are for memory access  
 

• This application used as init process of system. 
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• Application used (cont): 
 

• We embed calls to save the current value of a clock into a buffer 
along with a string. 
 

• The calls are embedded just before kernel calls init process and 
just after finishing the execution of 500 functions. 
 

• We measure the difference of clock time between two calls.  
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• Measurement Plan : 

• Have four AXFS images. 
• AXFS compressed image. 
• AXFS XIP image. 
• Code locality improved binary on AXFS compressed image. 
• Code locality improved binary on AXFS XIP image. 

 
• Application launch time is difference of the clock values  stored: 

• Just before application launch and  
• just after finishing executing 500 dummy functions.  

 
• We measure and compare launch time for all four FS images. 
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• Measurement Plan : 

• For the following four AXFS images: 
• AXFS compressed image. 
• AXFS XIP image. 
• Code locality improved binary on AXFS compressed image. 
• Code locality improved binary on AXFS XIP image. 

 
• Total Flash memory usage is size of the image. 
 

• We measure and compare size of the images. 
 



AXFS – PERFORMANCE 
(Total Flash memory usage) 

  

22 

February 

2013 

42 

F
S

 I
m

a
g

e
 s

iz
e
 (

K
iB

) 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Compressed
AXFS

XIP AXFS Locality
improved +

AXFS
compressed

Locality
improved +
AXFS XIP

15811 KiB 

18271 KiB 
17530 KiB 

16228 KiB 



AXFS – PERFORMANCE  
(System RAM footprint ) 

22 

February 

2013 

43 

  
•Measurement Plan : 

• For the following four AXFS images: 
• AXFS compressed image. 
• AXFS XIP image. 
• Code locality improved binary on AXFS compressed image. 
• Code locality improved binary on AXFS XIP image. 

 
• System RAM footprint  (Actual definition):  

• Total memory used in the system by the running the 
application.  

  
• System RAM footprint  (What we mean here): 

•  Total memory used in the system by virtue of running the 
application.  
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• We measure total memory used in the system while running our 
application. 
 

• Fair , as our application is the only process created in the system 
while it runs. 
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• Key point of AXFS : It allows XIP at page granularity. 
 

• XIP AXFS requires a profiling pass.  
 

• AXFS image can span multiple devices. 
 

• Can mount on MTD layer instead of block layer. 
 

• Suitable for code mostly used during boot / application 
launch. 
 

• Not suitable for hotspots in the system. 
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Thank You. 
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