
Measuring Responsiveness of Linux
Kernel on Embedded Systems

2010. 4. 12.

YungJoon Jung, Donghyouk Lim, Chaedeok Lim
Embedded SW Research Department

2Embedded Software Research DepartmentEmbedded Software Research Department

Contents

q Introduction
l RT system characteristic
l Needs on RT responsiveness measurement
l Considerations for our measurement method

q Related measurement methods
q Our measurement method

l Measurement interval
l Measurement mechanism
l Implementation
l Measurement result

q Comparison
q Supporting measurement tool

l Visualization system for measurement

q Future works

3Embedded Software Research DepartmentEmbedded Software Research Department

INTRODUCTION

4Embedded Software Research DepartmentEmbedded Software Research Department

Introduction

qReal-time System Characteristics
l System responsiveness vs. overall system performance

There is trade-off relationship between system responsiveness and
system performance

l Real-time system should guarantee two things
Timeliness

– Not quick response, but predictable
Should guarantee correct job execution

l Real-time system has two types
Hard
Soft

5Embedded Software Research DepartmentEmbedded Software Research Department

Introduction

qApplicable areas
l Traditional industry

Military System, Avionics, Nuclear Power Plant, etc.

l Consumer electronics industry
Cellular Phone, Portable Media Player, Digital Camera, Digital TV, etc.

qIn general, real-time systems have almost used
traditional RTOS

qRecently, many trials to adapt embedded Linux to
many systems due to cost and convenience

6Embedded Software Research DepartmentEmbedded Software Research Department

Introduction

qImprovement responsiveness of Linux
l Before Linux kernel 2.6

Sub Kernel approach mainly was used
– Linux kernel runs as an application on real-time OS

Linux kernel modification approach
– Several features start to enhance(i.e. preemptible kernel, lock-

break, etc)

l After Linux kernel 2.6
Linux kernel modification approach has been mainly improved
Many rt features has been matured

– O(1) scheduler, voluntary preemption, preemptible kernel,
complete kernel preemption (by Ingo Molnar), etc.

7Embedded Software Research DepartmentEmbedded Software Research Department

Introduction – Needs on measurement Method

qReal-time features have improved significantly
lMany people are interested in RT features
l It’s time to apply RT features on your system

qPeople starts to wonder how much level of RT
responsiveness can be supported
l This measurement needs have been raised

Customers want to know the criteria of RT performance
Developers want to know whether their developing system meets RT
requirement or not

l So far, people have been less interested in measurement
method than rt patch improvement

8Embedded Software Research DepartmentEmbedded Software Research Department

Introduction – Considerations for our method

qWe think, RT performance measurement should have
these requirements
lMeasurement interval should be defined
lMeasurement accuracy should be provided
lHardware dependency should be described

qWe suggest a RT responsiveness measurement
method for embedded Linux systems

qWe have plans to share an open project page
(sourceforge and rt-wiki)
lWe want to share our and other people’s experiences on

various systems

9Embedded Software Research DepartmentEmbedded Software Research Department

RELATED MEASURMENT
METHODS

10Embedded Software Research DepartmentEmbedded Software Research Department

Related Measurement Methods (1/2)

q Cyclictest
l Was developed by tglx

Mostly used in community

l Measures the delay of sleeping API
such as sleep() and nanosleep()

l Uses a high-resolution timer, if available
l Otherwise, uses a posix timer
l A smaller delay means higher

responsiveness.

11Embedded Software Research DepartmentEmbedded Software Research Department

Related Measurement Methods (2/2)

q Realfeel
l Was developed by Mark Hahn
l Uses periodic interrupt of a

real-time clock(RTC)
l Measures jitters between

interrupt period and task
invocation period

l Ideally, interrupt period and
task invocation interval are
same.

l The long interval of user-level
task invocation means low
responsiveness.

Kernel

Interrupt handler

Interrupt handler

Interrupt handler

RTC

rdtsc()

rdtsc()

rdtsc()

Interrupt
period

Interval 1

Interval 2

User-level

Jitter = Interval n – Interrupt period

12Embedded Software Research DepartmentEmbedded Software Research Department

OUR MEASUREMENT METHOD

13Embedded Software Research DepartmentEmbedded Software Research Department

Measurement interval definition

q Our definition of measurement intervals
l Timeline from hardware interrupt to user task invocation
l What we want to measure = “Preemption Latency”

14Embedded Software Research DepartmentEmbedded Software Research Department

Detail measurement interval and situation

15Embedded Software Research DepartmentEmbedded Software Research Department

Skeleton for Measurement Implementation

q Measure “Preemption
Latency”

q Uses period interrupt of RTC

q Executes while loop
and measure latency

Open/Set/Run
Periodic RTC

Read() RTC Data

Read Current Time
(TimeStamp B)

Preemption_Latency =
TimeStamp B – TimeStamp A

Read Current Time
(TimeStamp A)

End?

Periodic RTC
Start

Interrupt

Put_user(TimeStamp A)

y

y

n

Kernel ModeUser Mode

Control flow of our skeleton

16Embedded Software Research DepartmentEmbedded Software Research Department

What you need to measure responsiveness

q Real-time clock(RTC) must support a periodic interrupt
l An interrupt source
l Some RTCs don’t support periodic interrupt
l Test your RTC driver (ioctl() command)

q Timer or Clock counter
l Processor clock counter
l Timers included in your system
l Check the resolution of timer or clock
l Timestamps

17Embedded Software Research DepartmentEmbedded Software Research Department

Clock Counters in Processors

q What we found
l How to get the clock count

Dedicated operation (x86)
Coprocessor register (ARM, MIPS)

l Accessibility
Accessible in kernel and user mode (x86)
Configurable by special register (ARM11, MIPS32R2)
Only accessible in kernel mode (ARM9, xscale, MIPS)

18Embedded Software Research DepartmentEmbedded Software Research Department

Clock Counters in Processors

q Implementation
l Use inline assembly

No special library or API
Use some dedicated operations to access special registers

l Case 1 – x86
No access restriction
“rdtsc” operation provides clock count

__asm__ __volatile__("rdtsc"
: "=A" (tsc));

19Embedded Software Research DepartmentEmbedded Software Research Department

Clock Counters in Processors

q Implementation
l Case 2 – ARM (ARM11 and higher)

Special operation : “mcr”(move cp from reg), “mrc”
Access validation control : coprocessor 15, c15, c9 register

Read clock counter : coprocessor 15, c15, c12 register

__asm__ __volatile__("mcr p15, 0, %0, c15, c9, 0"
::"r"(0x1));

__asm__ __volatile__ ("mrc p15, 0, %0, c15, c12, 1"
:"=r"(tsc_irq));

20Embedded Software Research DepartmentEmbedded Software Research Department

Clock Counters in Processors

q Implementation
l Case 3 – MIPS (MIPS revision 2 and higher)

Special operation : “mtc0”(move to cp0), “rdhwr”(read hardware
register)
Hardware register enable : coprocessor 0, register 7

Read clock counter: hardware register 2, cycle counter

__asm__ __volatile__ ("mtc0 %0, $7"
::"r"(0x40000000));

__asm__ __volatile__ ("rdhwr %0, $2"
:"=r"(tsc_irq));

21Embedded Software Research DepartmentEmbedded Software Research Department

Kernel Patch for RT Measurement

q Modifying RTC driver - /drivers/rtc/
l Access grant of clock counter

When rtc device is open
In case of x86, no special operation
In case of ARM, add access validation control code
In case of MIPS, add HWR access enable code
Add code to open() handler : rtc_dev_open()

l Timestamp in kernel
When an interrupt handler is invoked
Find Interrupt handler code
Add code that read a value from clock counter
Return this timestamp with RTC value in Read() handler :
rtc_dev_read()

22Embedded Software Research DepartmentEmbedded Software Research Department

Measurement Result

q Platform : Via EPIA(Nehemiah) 1GHz, 256Mbyte memory
q Kernel version : Linux 2.6.24.4
q Stress : ping (per 100 nano sec) from other machine, hackbench 20 (per

50sec)
q Test time : 10 hours

Max
latency

time (usec)

Min latency
time (usec)

Ave
latency
time

(usec)

Vanilla 3888.57 3.96148 13.8279

Voluntary 3904.31 3.88947 11.2108

Preemptible 6792.74 4.75657 11.6637

Realtime-reempt 65.8249 9.36812 13.0913

vanilla kernel voluntary preemption kernel

preemptible kernel real-time preemption kernel

23Embedded Software Research DepartmentEmbedded Software Research Department

Measurement Result

q Platform : SMDK6410, 256Mbyte memory
q Kernel version : Linux 2.6.21.5
q Stress : hackbench 20 (per 50sec)
q Test time : 1 hours

Vanilla Kernel Real-Time Kernel

Max
latency

time (usec)

Min latency
time (usec)

Ave
latency
time

(usec)

Vanilla 742 22 7633

Realtime-reempt 125 55 145

24Embedded Software Research DepartmentEmbedded Software Research Department

COMPARISON

25Embedded Software Research DepartmentEmbedded Software Research Department

Comparison with Other Methods

Cyclictest Realfeel Our method
Measurement Int
erval

Scheduling Latency
(delay)

Jitter Preemption Latency

Interrupt Generat
ion Method

No Periodic program
med via /dev/rtc

Periodic programmed via /d
ev/rtc

Requirement Sometimes needs HRT
for measurement accura
cy

/dev/rtc, RDTSC
for x86

/dev/rtc, performance counte
r for each CPU architecture

Advantage CPU architecture inde
pendent, but sometimes
it requires high resoluti
on timer for specific CP
U architecture

Can be used easy
and conveniently

Measure the Preemption Lat
ency, Implementation is easy,
Result data is intuitive

Disadvantage Only measure Schedul
ing Latency

Only measures ji
tter and supports x
86

Can be architecture depende
nt, but it supports the skeleton
for steady and easy adaption,
already supports x86 and arm

26Embedded Software Research DepartmentEmbedded Software Research Department

SUPPORTING MEASUREMENT
TOOL

27Embedded Software Research DepartmentEmbedded Software Research Department

Visualization of Responsiveness Measurement

q Use “Livegraph” tool
l Open source graph tool
l Read data from a file and draw a graph
l The refresh rate of a graph can be adjusted

q Measurement toolkit
l Measurement data transferred via serial line
l A program reads data and write them on a file
l Livegraph will show you result

Target board Laptop for graph

28Embedded Software Research DepartmentEmbedded Software Research Department

Future Work

qOpen project
l All of measurement programs will be open
l Sourceforge.net page will be open
l Please come and join our project

qTechnical showcase in ELC2010
lDemonstration – measurement on ARM processor

l Please visit us and watch our result tomorrow night

29Embedded Software Research DepartmentEmbedded Software Research Department

THANK YOU

