
Poky-tiny and Beyond,
or Trying to put the Yocto in Yocto Project

Scott Murray
scott.murray@konsulko.com

mailto:scott.murray@konsulko.com

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

About Me
● Linux user/developer since 1996
● Embedded Linux developer starting in 2000
● Principal Software Engineer at Konsulko Group
● Konsulko Group

○ Services company specializing in Embedded Linux and Open Source Software
○ Hardware/software build, design, development, and training services.
○ Based in San Jose, CA with an engineering presence worldwide
○ https://konsulko.com

https://konsulko.com

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Agenda
● Quick overview of OpenEmbedded / Yocto Project
● Review of embedded Linux distribution size history
● poky-tiny exploration
● Sizes of some common image features / packages
● Other image size reduction options
● Summary / Recommendations
● ...and Beyond?

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Caveats
● Not going to dig into kernel size reduction techniques, as that topic receives

frequent coverage
● Not covering sizes of graphical desktop components
● Test builds for size investigation were done with the qemux86 architecture

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

OpenEmbedded & The Yocto Project in 1 Slide
● OpenEmbedded (OE) is a build system and associated metadata to build

embedded Linux distributions.
● The Yocto Project is a collaboration project that was founded in 2010 to aid in

the creation of custom Linux based systems for embedded products. It is a
collaboration of many hardware and software vendors, and uses
OpenEmbedded as its core technology. A reference distribution called “poky”
(pock-EE) built with OE is provided by the Yocto Project to serve as a starting
point for embedded developers.

Yocto (symbol y) is a unit prefix in the metric system denoting a factor of 10−24
or 0.000000000000000000000001.

- Yocto- in Wikipedia, retrieved March 11, 2018 from
https://en.wikipedia.org/wiki/Yocto-

https://en.wikipedia.org/wiki/Metric_prefix
https://en.wikipedia.org/wiki/Metric_system
https://en.wikipedia.org/wiki/Yocto-

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

A brief history of timesize
● When Linus Torvalds first released Linux in 1991, typical desktop PCs would have been

Intel 386 or 486 based, running at 25 - 40 MHz, with 4 - 32 MB of RAM, and had a hard
disk of at most a few hundred MB (if they had one at all).

● When embedded Linux started taking off in the late 90s and early 00s, the typical target
platforms had faster CPUs (100s of MHz), but RAM and storage were still constrained
by cost to sizes like 8 - 64MB RAM and 8 - 16MB flash memory.

● Embedded Linux distributions of that era tended to be built with custom in-house build
systems, or using commercial offerings from companies like MontaVista, TimeSys, etc.

● Small embedded Linux distributions would typically be based on the kernel, uclibc, and
BusyBox...

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

A brief history of timesize (2001-2002)
● In 2002, the Linux based Sharp Zaurus SL-5500 was

released outside Japan
● Based on the Intel SA-1110 StrongARM processor running

at 206 MHz, 64 MB of RAM, and 16MB Flash
● OpenZaurus project started in late 2001 / early 2002 to

produce Linux images for the Zaurus, this was the
precursor to OpenEmbedded…

(photo courtesy Wikipedia: https://commons.wikimedia.org/wiki/File:Sharp_Zaurus.jpg)

https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/StrongARM
https://commons.wikimedia.org/wiki/File:Sharp_Zaurus.jpg

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

A brief history of timesize (today)
● Typical embedded system platforms now range up to > 2 GHz CPU clock

speeds, RAM sizes of 256 MB to GBs, and flash storage of GBs…
● Barring memory size, even the average modern microcontroller is multiple

times more capable than the early Linux embedded targets
● Given this, do we even need to worry about distribution size anymore?

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Why bother optimizing distribution size?
● There are embedded products that still benefit from the cost-optimization of

reducing RAM and storage footprint
○ e.g. developers interested in using Linux in IoT edge devices

● An increasing need to keep devices up to date means smaller images have a
bandwidth and download time advantage, and potentially a reduced security
attack surface

● Use cases such as:
○ Small recovery partition images
○ Container images
○ Supporting older hardware (e.g. Tiny Core Linux, http://distro.ibiblio.org/tinycorelinux/)

http://distro.ibiblio.org/tinycorelinux/

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

poky-tiny
● Added in Yocto Project denzil release in April 2012
● “Poky-tiny is intended to define a tiny Linux system comprised of a Linux

kernel tailored to support each specific MACHINE and busybox.” (from
poky-tiny.conf)

● As with poky, intended to act as a starting point for your own distribution.
● Caveats:

○ Only builds for qemux86 by default
○ Only supports core-image-minimal
○ So only has a barebones kernel, libc, and BusyBox

● Documented (somewhat) at:
○ https://www.yoctoproject.org/docs/2.4.2/dev-manual/dev-manual.html#building-a-tiny-system

https://www.yoctoproject.org/docs/2.4.2/dev-manual/dev-manual.html#building-a-tiny-system

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

poky-tiny contents
$ cat installed-package-sizes.txt
606 KiB musl
548 KiB busybox
23 KiB netbase
4 KiB update-alternatives-opkg
3 KiB busybox-udhcpc
3 KiB busybox-mdev
3 KiB base-files
2 KiB run-postinsts
2 KiB busybox-syslog
0 KiB packagegroup-core-boot
0 KiB base-passwd

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

So how big is poky-tiny?

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

So how big is poky-tiny? (continued)

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

So how big is poky-tiny? (Notes / Observations)
● Numbers pulled from data generated by buildhistory class
● Missing uclibc sizes for dora - dizzy releases due to build issues
● Noticeable trend of glibc increasing in size over time
● No obvious dramatic size difference between uclibc and musl
● Installed package size != root filesystem size

○ There is some overhead due to the inodes from the many small files used by
update-alternatives-opkg metadata

○ The root filesystem is assembled from binary packages, and the update-alternatives-opkg tool
is used to handle alternate providers of binaries (e.g. BusyBox versus util-linux)

○ Currently there is no configuration to disable installation of its metadata into the image, so
removal requires post-processing

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

poky-tiny changes versus poky
● TCLIBC
● ENABLE_WIDEC
● USE_NLS
● DISTRO_FEATURES
● linux-yocto-tiny

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

poky-tiny changes: TCLIBC
● TCLIBC variable selects the standard C library to use; default value is glibc,

as of the krogoth release the other option is musl (previously was uclibc)
● musl (https://wiki.musl-libc.org/) is a lightweight C library implementation

○ Actively maintained, MIT licensed
○ In addition to binary size benefits, there are significant runtime memory usage ones as well

● See http://www.etalabs.net/compare_libcs.html for a detailed comparison
● While the recipes in oe-core are test built with musl, recipes from other layers

may not work out of the box, and other software may require patching to build
○ Almost all the recipes in meta-openembedded build against musl, the remaining handful are

actively being worked on
○ Typical failures are due to accidentally relying on non-standard glibc extension or definitions

https://wiki.musl-libc.org/
http://www.etalabs.net/compare_libcs.html

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

How much does musl save?

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

poky-tiny changes: ENABLE_WIDEC
● ENABLE_WIDEC variable controls wide character support for the ncurses

terminal library
● Disabling ncurses wide character support only affects console applications
● However, not all applications will build with it disabled

○ core-image-minimal and core-image-full-cmdline images build, core-image-sato does not

● Size savings are not necessarily dramatic
○ About 200 KB if the image pulls in ncurses
○ ATM core-image-minimal does not actually pull in any packages that have ncurses as a

dependency...

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

poky-tiny changes: USE_NLS
● USE_NLS variable controls native language support for applications, i.e.

internationalization via the gettext library
● Disabling NLS might be problematic if you have applications using gettext to

provide internationalized output
● However, again not all applications will build with it disabled

○ core-image-minimal and core-image-full-cmdline build, core-image-sato does not

● Size savings are dependent on application usage of gettext
○ No savings in core-image-minimal, about 2 MB in core-image-full-cmdline

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

poky-tiny changes: DISTRO_FEATURES
● DISTRO_FEATURES variable controls software feature support

○ Mostly translates to configure script options, but some features add kernel module and runtime
package dependencies

● poky-tiny removes almost all of the default features that poky enables, leaving
on IPv4 and IPv6 support on as well as a couple of other base features

● The features you need are largely dependent on your target image contents
○ e.g. x11, pulseaudio, many fine-grained libc features for glibc

● See Chapter 14 of the Yocto Project Reference Manual for a breakdown of
DISTRO and MACHINE features

○ https://www.yoctoproject.org/docs/2.4.2/ref-manual/ref-manual.html#ref-features

https://www.yoctoproject.org/docs/2.4.2/ref-manual/ref-manual.html#ref-features

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

poky-tiny changes: linux-yocto-tiny
● Provides a highly pruned kernel configuration
● qemux86 specific
● Needs to be over-ridden with PREFERRED_PROVIDER_virtual/kernel if you

want to test poky-tiny on another architecture
● General kernel size reduction guidelines apply, i.e. only enable features and

drivers for the target platform
● A static kernel without modules is a win if possible since it results in an overall

size reduction

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Common image feature / package sizes
● Note that size numbers include all the dependencies that are pulled in
● Package management

○ rpm: ~102 MB (includes OpenSSL, Python 3, etc.)
○ deb: ~22 MB
○ ipk: ~4 MB

● SSH daemon:
○ OpenSSH (and OpenSSL): ~6.7 MB
○ Dropbear: ~300 KB

● Systemd: ~30 MB
● Python 2.7: ~4 MB, ~40 MB with all standard modules
● Python 3.5: ~17 MB, ~64 MB with all standard modules

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Other size reduction options
● Splitting files out of a package with FILES_${PN}-foo

○ Example use would be to pick out a tool from core-utils, since it is not split into per-tool
packages like util-linux

● A more extreme example is removing all .py Python source files, leaving only
the compiled .pyc files

○ Currently requires modifying distutils-common-base.bbclass to make it generic for all Python
modules

● Use ROOTFS_POSTPROCESS_COMMAND to remove files from the image
○ e.g. removing unneeded update-alternatives-opkg metadata
○ https://www.yoctoproject.org/docs/2.4.2/ref-manual/ref-manual.html#var-ROOTFS_POSTPRO

CESS_COMMAND

● If using glibc, tweak IMAGE_LINGUAS to remove unwanted locales

https://www.yoctoproject.org/docs/2.4.2/ref-manual/ref-manual.html#var-ROOTFS_POSTPROCESS_COMMAND
https://www.yoctoproject.org/docs/2.4.2/ref-manual/ref-manual.html#var-ROOTFS_POSTPROCESS_COMMAND

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Summary / Recommendations
● If starting out, take poky-tiny.conf as a starting point to define your own

distribution configuration, then add things to it
● Otherwise, it is likely that switching to using musl will provide the biggest

immediate improvement
● Use the buildhistory class to help simplify investigating what is taking up

space in your image
○ https://www.yoctoproject.org/docs/2.4.2/ref-manual/ref-manual.html#maintaining-build-output-

quality
○ The BUILDHISTORY_COMMIT option allows looking at differences between builds

● For kernel (and BusyBox) size reduction start with the guidelines at:
○ https://www.yoctoproject.org/docs/2.4.2/dev-manual/dev-manual.html#trim-the-kernel

https://www.yoctoproject.org/docs/2.4.2/ref-manual/ref-manual.html#maintaining-build-output-quality
https://www.yoctoproject.org/docs/2.4.2/ref-manual/ref-manual.html#maintaining-build-output-quality
https://www.yoctoproject.org/docs/2.4.2/dev-manual/dev-manual.html#trim-the-kernel

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

...and Beyond?
● Investigate having a feature to optionally remove alternatives metadata
● There is mention in poky-tiny.conf of an unimplemented “tiny”

DISTRO_FEATURE, investigate what that could/should do
○ A scheme to reduce PACKAGECONFIG default settings for large packages with lots of

options?

● Take a look at Tiny Core Linux, OpenWRT, and other similar distributions to
see if there are tricks that we could emulate

○ Perhaps a project to attempt to produce a distribution similar in content to Tiny Core, to see if
that reveals where any further issues lie

● Container images

Questions?

